
The New South Wales iVote System:
Security Failures and Verification Flaws

in a Live Online Election

J. Alex Halderman1 and Vanessa Teague2?

1 University of Michigan
jhalderm@eecs.umich.edu
2 University of Melbourne
vjteague@unimelb.edu.au

Abstract. In the world’s largest-ever deployment of online voting, the
iVote Internet voting system was trusted for the return of 280,000 ballots
in the 2015 state election in New South Wales, Australia. During the
election, we performed an independent security analysis of parts of the
live iVote system and uncovered severe vulnerabilities that could be
leveraged to manipulate votes, violate ballot privacy, and subvert the
verification mechanism. These vulnerabilities do not seem to have been
detected by the election authorities before we disclosed them, despite
a pre-election security review and despite the system having run in a
live state election for five days. One vulnerability, the result of including
analytics software from an insecure external server, exposed some votes to
complete compromise of privacy and integrity. At least one parliamentary
seat was decided by a margin much smaller than the number of votes
taken while the system was vulnerable. We also found protocol flaws,
including vote verification that was itself susceptible to manipulation.
This incident underscores the difficulty of conducting secure elections
online and carries lessons for voters, election officials, and the e-voting
research community.

1 Introduction

Internet voting has rarely been used in significant elections for public office, due
to numerous, well established security risks [15], such as compromise of election
servers, of voters’ client devices, of the network in between, and of the voter
authentication process. To better understand how these risks can play out in
real elections, we studied what may be the largest deployment of Internet voting
to-date, the March 2015 state election in New South Wales, Australia.

In this election, voters had the option to use an online voting system called
iVote, which was developed by e-voting vendor Scytl in partnership with the New
South Wales Electoral Commission (NSWEC). Prior to the election, NSWEC
performed multiple security studies (e.g. [25, 26]), and officials publicly claimed

? To whom correspondence should be addressed.

ar
X

iv
:1

50
4.

05
64

6v
2

 [
cs

.C
R

]
 5

 J
un

 2
01

5

2 Halderman and Teague

that the vote was “. . . completely secret. It’s fully encrypted and safeguarded, it
can’t be tampered with” [1]. Over 280,000 votes were returned through iVote
(about 5% of the election total), exceeding the 70,090 Norwegian votes submitted
online in 2013 [29] and the 176,491 online votes in the 2015 Estonian election [13].

While the election was going on, we performed an independent, uninvited
security analysis of public portions of the iVote system. We discovered critical
security flaws that would allow a network-based attacker to perform downgrade-
to-export attacks [5, 12], defeat TLS, and inject malicious code into browsers
during voting. We showed that an attacker could exploit these flaws to violate
ballot privacy and steal votes. We also identified several methods by which an
attacker could defeat the verification mechanisms built into the iVote design.

After we reported these problems to authorities, NSWEC patched iVote to
correct the network security flaws, but by this time the election had been running
for five days and 66,000 votes had been cast on the vulnerable system. After the
vulnerabilities were removed, we made our findings public in a technical blog
post on Freedom to Tinker [31] and an essay for nontechnical readers in The
Conversation [32].

The election count is now complete [24], with the final seat in the proportion-
ally represented Legislative Council having come down to a margin of 3177 votes,
a tiny fraction of the number of votes cast over iVote before it was patched. To
our knowledge, this is the first time enough votes to affect a parliamentary seat
in a state election have been returned over an Internet voting system while it was
demonstrably vulnerable to attacks that would allow external vote manipulation.
While we do not know whether anyone exploited the opportunity for electoral
fraud, we know the opportunity was there.

In this paper, we detail our security findings about iVote and draw broader
lessons from this case study. The iVote vulnerability reinforces findings of security
problems in other proposed and fielded Internet voting systems, such as Wash-
ington, D.C.’s [34] and Estonia’s [30], and it demonstrates once again that no
amount of pre-election review can guarantee that such a system is secure. These
problems also highlight the brittleness of the web platform and TLS protocol—a
fragility which may be incompatible with the intensive security requirements and
time pressure of political elections.

iVote’s vulnerabilities should encourage skepticism of other Internet voting
systems claimed to be verifiable. Years of research on electronic methods of
election verification are only just beginning to produce end-to-end verifiable
voting systems appropriate for use in low-stakes, low-coercion elections [4], or in
government elections using a postal mail step [35], or in the much easier case of
supervised polling places [7, 10, 11]. The iVote verification protocol ignores basic
insights and techniques from that research, opting instead for a telephone-based
vote reading service that substantially reduces voter privacy while providing only
very limited assurances of integrity. Furthermore, an election verification protocol,
like any other security protocol, should not be relied upon without an extensive
period of public review; in the case of the iVote protocols, there was none.

The New South Wales iVote System: Security Failures 3

Securing Internet voting requires overcoming some of the most difficult prob-
lems in computer security, and, with existing technology, even the smallest
mistakes can undermine the integrity of the election result. The experience in
New South Wales is a real-world example demonstrating online voting secu-
rity problems that many security researchers, including us, have warned about
for many years. We recommend that election officials refrain from conducting
high-stakes elections online until there are fundamental security advances.

2 iVote Background

The iVote system was a complex interaction of many components, some managed
by the NSWEC and some by other administrators. Registration and voting could
each be done by three different methods: by telephone, over the Internet, or from
a NSWEC computer in a polling place. There were four steps in using iVote:

1. The voter registered, received an 8-digit iVote ID, and chose a 6-digit PIN.

2. The voter logged in to the voting server (or the telephone voting system) with
her iVote ID and PIN, cast a vote, and received a 12-digit receipt number.
The vote was encrypted on the client, sent to the voting server, and forwarded
to a separate verification service.

3. Optionally, the voter telephoned the verification service, an interactive voice
response (IVR) system. She entered her iVote ID, PIN, and receipt number
and heard her vote read back. This service stopped at the close of polls.

4. Optionally, the voter visited an online receipt service to query whether any
votes with her receipt number were included in the final count. No login was
needed. This service remained active after the close of polls.

More details are described in the Security Implementation Statement [26]
and other reports published by NSWEC [22]. These include prose descriptions of
the methods of encrypting and processing the vote. The protocol evolved over
several drafts, but all of them differ in some important respects from what the
system actually did during the election (see Section 5.1). No source code was
made available for any of the server-side processes, including the main voting web
server, verification server, registration server, and receipt server. Anyone could,
of course, inspect the HTML and JavaScript delivered to the voter’s browser.

In the 2015 state election, each voter could cast one vote for the Legislative
Assembly and one for the Legislative Council. Although iVote was officially
reserved for the disabled and other eligible absentee voters, voters could qualify
by self-certifying that they would be out of the state during election day [23].
iVote opened to the public on the morning of March 16 and closed at 6 P.M.
on March 28, the same time as other polls closed in the state election. Officials
reported that about 280,000 votes (5% of all counted ballots) were cast over
iVote.

4 Halderman and Teague

Fig. 1. Like most web applications, iVote was made up of dozens of resources that
were loaded in the background by the browser. Using the Chrome Developer Tools, we
could see that most of the iVote resources came from the “core voting system” server,
cvs.ivote.nsw.gov.au, but one component, JavaScript for the Piwik analytics tool,
was loaded from an external server, ivote.piwikpro.com.

3 Vulnerabilities in iVote

Shortly after iVote voting opened, we began an independent security review of the
publicly accessible components of the system. Although election officials did not
publish the source code, client-side portions of this code were necessarily delivered
to voters’ browsers. Since we were not eligible voters, we did not proceed past
the login screen of the voting web application, https://cvs.ivote.nsw.gov.au,
but we did inspect the HTML, CSS, and JavaScript code that made up the
application. In addition, NSWEC made a practice version of the iVote system
available to the public at https://practise.ivote.nsw.gov.au. The practice
site allowed anyone to log in using provided credentials and vote a mock ballot.
We confirmed that the practice system used substantially the same client-side
code as the real election server and used it to perform further hands-on tests.

iVote is designed to deliver the web application using HTTPS. This is intended
to prevent an adversary from modifying or replacing the code in transit to the
user’s web browser. (The system uses other layers of cryptography on top of
HTTPS to protect the actual ballot and submitted votes.) However, not all

https://practise.ivote.nsw.gov.au

The New South Wales iVote System: Security Failures 5

Fig. 2. The ivote.piwikpro.com server scored an F on the Qualys SSL Labs tests.
Among other reported problems, the server used insecure Diffie-Hellman parameters,
allowed 512-bit export cipher suites that are subject to the FREAK attack, and was
vulnerable to the POODLE attack. We showed that these problems would allow a
man-in-the-middle attacker to inject vote-stealing code into the iVote application.

HTTPS servers are secure—there are many configuration and operational details
that system administrators need to get right in order to ensure that the protocol
provides the desired security guarantees. We tested the security of the main iVote
HTTPS server using a standard tool, the Qualys SSL Labs SSL Test. The results
indicated that the server configuration complied with current best practices and
was secure against known vulnerabilities.

However, a closer analysis of the structure of the iVote application showed
that one of the resources loaded by the site came from an external web server.
When the voter loads the iVote site, the site imports and executes JavaScript
for a third-party analysis tool called Piwik. As shown in Figure 1, this code
is loaded from a URL at the third-party server https://ivote.piwikpro.com.
When we tested the SSL configuration of this site, we found that it was extremely
poor—scoring an ‘F’ grade in the SSL Labs test, as shown in Figure 2. Among a
variety of other security problems, the server supported 512-bit “export-grade”
ciphersuites for both RSA and ephemeral Diffie-Hellman key exchange. As we
will show, this weak configuration allowed multiple ways for an attacker to bypass

https://ivote.piwikpro.com

6 Halderman and Teague

the security provided by HTTPS and inject malicious code into the user’s iVote
session without triggering any browser security warnings.

3.1 Vulnerability to the FREAK attack

The FREAK attack [8, 12], short for Factoring RSA Export Keys, is a TLS
vulnerability that was publicly disclosed on March 3, 2015, less than two weeks
before the start of the election. The Piwik server’s configuration problems made
it vulnerable to FREAK, and a network-based man-in-the-middle attacker could
exploit the attack against the Piwik server in order to compromise iVote.

As the name implies, FREAK exploits the weakness of 512-bit “export-grade”
RSA keys that are supported by the TLS protocol as a legacy feature of 1990s era
U.S. cryptographic export restrictions. If a server supported export-grade RSA—
as did ivote.piwikpro.com—an attacker could fool many popular browsers
into using this reduced-strength cryptography, obtain the RSA private key by
factoring the 512-bit public key, and manipulate the contents of the connection.

The attack begins by intercepting the browser’s TLS CLIENT HELLO message
and sending a substitute message to the server declaring that the browser wishes
to use export-grade RSA. In export-grade RSA modes, the server sends a 512-bit
“temporary” RSA public key to the client and signs this key, together with a
nonce chosen by the client, using the public key from its normal X.509 certificate.
The client verifies that there is a valid chain of certificates from the server’s X.509
certificate to a trusted root certificate authority, then uses the temporary RSA
key to encrypt session key material that will be used to secure the remainder
of the connection. The FREAK attack exploits a mistake in the way browsers
process the server’s message containing this temporary key. Several widely used
TLS implementations would accept a temporary export-grade RSA key even if
the client did not ask for it. This allows the attacker to downgrade a connection
requesting normal RSA encryption to much weaker export-grade RSA.

The main challenge for the attacker is to convince the voter’s browser that
he really is ivote.piwikpro.com. To do this, he needs the server’s signature on
the client’s TLS nonce and an RSA public key that he knows the private key for.
Assume for now that Piwik always uses the same 512-bit key. Nadia Heninger has
shown that it is possible to factor 512-bit RSA keys using open-source software
and Amazon EC2 in about 7 hours at a cost of about $100 [17]. Once the attacker
has factored the key, he can intercept the user’s connection, note the client’s
nonce, and make a request to the real Piwik server with the same nonce—in
effect, using it as a signature oracle. He can send the resulting signature on the
RSA key as part of the connection to the voter’s browser, which will see the key
as valid and use it to encrypt its session key material. Since the attacker has
factored the key, he can decrypt this key material and impersonate the Piwik
server for the rest of the connection.

One complication is that the Piwik server, unlike many TLS implementations,
periodically rotated its temporary key. In our tests, we saw the key change
approximately every hour—too frequently to apply simple factoring methods
available to us. However, we found that we could force the Piwik server to use

ivote.piwikpro.com
ivote.piwikpro.com

The New South Wales iVote System: Security Failures 7

the same temporary RSA key for much longer periods by maintaining a long-
lived TLS connection and repeatedly invoking client-initiated renegotiation. Each
renegotiation can use a different client nonce, so, by using this method, we could
use the Piwik server as a signature oracle to attack as many clients as we wanted
and use the same key for as long as this connection stayed open.

In tests, we were able to sustain the connection for 17–21 hours, and, with
Heninger’s assistance, we factored the temporary RSA key from one such session.
An attacker could start such a connection, spend the first 7 hours factoring the
key, and then attack an unlimited number of voters’ TLS connections for the
remainder of the connection lifetime. By making multiple such connections in a
staggered fashion, the attacker could have continuously attacked iVote users for
the duration of the connection at a cost of about $100 per 12-hour period.

Many popular browsers were vulnerable to FREAK, including Internet Ex-
plorer, Safari, and Chrome for Mac OS and Android [12]. Although patches were
released for most browsers around March 10, iVote voting opened on March 16,
and many users likely had not applied the relevant patches.

3.2 Vulnerability to the Logjam attack

The ivote.piwikpro.com server was also vulnerable to an even more powerful
downgrade-to-export attack that affected all popular browsers: the Logjam
attack [5], which was publicly disclosed on May 20, 2015. We knew about this
flaw during the election because one of us was part of the team that developed
the attack, but we could not talk about it publicly because responsible disclosure
to the browser-makers was still ongoing. In other words, we had a zero-day TLS
vulnerability that would have allowed us to attack any voter’s iVote session.

Logjam is reminiscent of the FREAK attack, but it affects ephemeral Diffie-
Hellman (DHE) ciphersuites rather than RSA ciphersuites, and it is made possible
by a flaw in the TLS protocol rather than a client-side implementation error. If a
server supports export-grade Diffie-Hellman with parameters that an attacker
can break, a man-in-the-middle can force browsers to use it, obtain the session
keys, and intercept or arbitrarily change the contents of the connection [5].

In Diffie-Hellman, two public parameters, a prime p and a group generator
g, are used to compute a public key y from a secret key x as y = gx mod p. An
attacker can breach the security by computing the discrete logarithm of y to
recover x. Although computing one discrete log is harder than factoring one RSA
key of equivalent parameter size, a large part of the discrete log computation can
be reused for all connections that use the same p [5].

The Piwik server supported export Diffie-Hellman using a fixed 512-bit p:

a705d4b834119d78e434e47be531ae602209c4810fa3baca2b781d49f847bc27

7681d93375522e41aae5de77d86d124852951be54145c9417f603ea96e5024b7

The team that developed the Logjam attack used open-source software to perform
the precomputation step for three other common 512-bit values of p, each of which
took about a week of wall-clock time using idle cycles on a cluster [5]. Following

8 Halderman and Teague

Fig. 3. Although the NSW web server used a secure HTTPS configuration to deliver
the iVote application, the app subsequently loaded additional JavaScript from an
insecure external server, ivote.piwikpro.com. An attacker who intercepted connections
between the voter’s browser and the PiwikPro server could tamper with this JavaScript
to inject arbitrary malicious code into the iVote application.

precomputation, they could break individual key exchanges based on those values
in about 90 seconds using a single 24-core machine. The same kind of attack would
be possible against Piwik’s p, and would allow us to effectively attack all iVote
sessions from any browser by paying a fixed up-front cost for the precomputation.
In that case, since the browser connects to Piwik in the background, the 90-second
delay to compute the session key would not be noticeable by the voter.

3.3 Proof-of-concept, exploitability, and responsible disclosure

We developed a proof-of-concept demonstration to show how an attacker could
leverage the FREAK or Logjam vulnerability to manipulate the iVote system.
Following the scheme in Figure 3, this attack exploited the vulnerabilities in the
Piwik server to replace the code loaded from ivote.piwikpro.com with malicious
JavaScript. Since this code was executed in the context of the user’s iVote session,
it could arbitrarily change the operation of the iVote web application.

The demonstration malicious code we injected hooked into key parts of the
iVote client code. iVote used AngularJS to run a series of worker JavaScript
threads which implemented cryptographic operations. Crucial election data,
including the contents of the vote, were passed between these workers as messages.
Our code intercepted these messages to change the intended vote to a different
vote as it is passed to the worker script that performed the encryption. This
changed the vote that was sent to the iVote server. Our code also exposed

ivote.piwikpro.com

The New South Wales iVote System: Security Failures 9

Fig. 4. As a proof of concept, we showed that we could exploit the FREAK attack
against iVote to inject malicious code that would surreptitiously manipulate the voter’s
choices (left) and report them to a command-and-control server (right). Our mock
attacker’s symbol invokes Ned Kelly, an iconic Australian outlaw.

the vote that the voter intended to cast and sent it, along with the voter’s
authentication credentials, to a command-and-control server operated by the
attacker. Screenshots from our demonstration are in Figure 4.

To exploit these attack against iVote, the attacker would need the ability to
intercept and manipulate connections from the voter’s browser destined for the
Piwik server. (Such man-in-the-middle attacks are, of course, one of the main
threats that HTTPS is intended to guard against.) Criminal attackers have many
well documented ways to achieve this. It could be done using client-side malware
(including functions of widespread pre-existing botnets [2, 9]), by compromising
insecure WiFi access points, by poisoning ISP DNS caches to redirect the traffic
to an attacker-controlled IP address [18], by attacking vulnerable routers or
links along the path to the server, or by redirecting packets by hijacking BGP
prefixes [6], to give just a few examples. These attacks are especially practical
in an election scenario, because the attacker can be highly opportunistic—he
does not care which NSW voters he compromises, so he can target any insecure
hosts or infrastructure in the entire state. In addition to large scale criminal
fraud, many individuals and employers have legitimate administrator privileges
on home or workplace networks that others might use for voting, and could abuse
these privileges to target votes.

Since we (of course) would not attempt to steal actual votes, we tested our
demonstration attack only on our own votes, cast only on the iVote practice
system, which was identical in all relevant respects to the real voting system.
After confirming that the attack was possible, we notified the Australian CERT of
the vulnerabilities around 2 P.M. on Friday, March 20. CERT took responsibility
for notifying the NSW Electoral Commission, which fixed the problem around
midday on Saturday, March 21, by modifying the iVote server configuration to
disable Piwik. By then, about 66,000 votes had already been cast. We cannot
know with certainty whether any real iVote votes were attacked; however, the

10 Halderman and Teague

final Legislative Council margin of 3177 votes represented less than 5% of the
votes cast over iVote while the server was vulnerable.

4 Circumventing Verification

Vote manipulation attacks should be detectable with some probability by the veri-
fication mechanism. However, the verification mechanism itself suffers from a num-
ber of straightforward circumventions and at least one important protocol flaw.

4.1 Simple verification avoidance

The telephone-based verification scheme is easily sidestepped for last-minute
votes because it shuts down at the close of polls. So an attacker could confidently
modify votes that were cast immediately before the deadline, knowing that they
could not be verified. A malicious client (or server) could slow down near the
end of polling to exacerbate this problem.

Voters are told how to verify by the same website they use to vote, so the
attacker could use the man-in-the-middle methods we describe above to direct
the voter to a fake verification phone number that would read back the voter’s
intended choices. Thanks to modern VoIP technology, setting up an automated
phone system is simply a matter of software.

Even more simply, the attacker could delay submitting the vote and showing
the receipt number for a few seconds, in hopes that the voter does not intend to
verify and simply leaves the website. (Perhaps the site could show a progress bar
in place of the number.) If the voter navigates away, there will be no chance to
verify, and the attacker can confidently submit a fraudulent vote. Otherwise, the
attacker can give up, submit the genuine vote, and display the receipt number.

4.2 Using the “clash” attack to reduce verification failures

The following attack allows an attacker who has intercepted many iVote sessions
to share information between them and hence manipulate a large number of
votes with limited detection. The attack is a variant of the “clash” attack [19].
We believe it would work, but of course we could not test it during the election
without interfering with real votes.

When verification fails to produce the expected vote, the voter is supposed to
complain to the authorities. Inevitably, some voters will falsely complain, either
mistakenly or maliciously, that their correctly entered vote has been dropped
or misrecorded. The iVote verification design does not provide any evidence to
support or disprove voter complaints, making it difficult to distinguish an attack
from the baseline level of complaints due to voter error. This observation is
important in the following attack, which reduces the number of complaints, but
probably does not eliminate them altogether. Although this attack would some-
times be detected, the percentage of verification complaints would substantially

The New South Wales iVote System: Security Failures 11

underrepresent the fraction of manipulated votes, perhaps leading to an incorrect
result being sustained during a post-election legal challenge.

The attack requires the ability to:

– misdirect some voters’ registrations,

– assign these voters a PIN at registration, as opposed to letting them choose,
and

– compromise some iVote clients, using the attack from Section 3 or simple
misdirection.

First observe that, while the registration server itself was protected by HTTPS,
the main iVote gateway from which voters reached it ran plain HTTP3. This gave
a man-in-the-middle attacker the opportunity to misdirect registration attempts
to a site of the attacker’s choosing, for instance by using the SSL strip attack [20].
At this point the attacker could substitute a look-alike registration site with a
modified workflow. For instance, it could assign a PIN rather than accept one,
under the assumption that a typical voter would not realize this was not the
normal behavior.

Now note that Australian elections use multi-candidate preferential voting,
so two voters who support party A may subsequently list quite different lower
preferences. However, some common patterns recur very often, for example the
vote consisting of a single (first) preference on each ballot. Many voters also
follow official party “How to Vote” cards. Although we are not aware of data for
NSW, studies in the neighboring state of Victoria show that overall about 40%
of voters follow their how-to-vote card exactly [33].

The main idea of this attack is to intercept a voter’s registration and give him
the iVote ID and PIN of a like-minded person who has already voted, preferably
one who has cast a simple vote likely to be repeated. If the target voter’s choices
exactly match those of the first voter, then all of the verification will look exactly
right to both voters. The attacker can safely reuse the target voter’s registration
credentials to get a new iVote ID and PIN and cast an arbitrary vote. If the
target voter’s choices are different from the first voter, he will detect a problem
if he uses the verification service, but not if he contacts the receipt service only.

This attack removes a party-A vote and substitutes a vote of the attacker’s
choice. While it may sometimes be detected, if prediction of voter behavior is
good then it raises far fewer complaints than that quantity of attacked votes ought
to. For example, if prediction is perfect then it raises no alarm; if prediction is
near-perfect then it manipulates many more votes than the number of verification
complaints indicates. Note that it is not hard to predict how someone will vote
when you have their registration credentials and hence their electoral roll record.

We find it notable that issues mentioned in the academic literature on verifiable
voting—including the absence of dispute resolution (or accountability) and the
prospect of a particular kind of attack—here turn out to be relevant in the
context of a real-world online election.

3 Or rather, it did for the first week of voting, until we pointed this out to NSWEC.

12 Halderman and Teague

5 Other Issues

In this section we discuss additional problems and observations that we noted
while assessing iVote.

5.1 Integrity, auditing, and verification

The iVote verification and audit systems are incompletely described in public
documents, and no source code is publicly available, so it is not possible for
external independent observers like us to rule out the existence of other substantial
risks to integrity, beyond those we have already described. However, we can make
several high-level observations about limitations of the design.

For instance, the design cannot achieve the same level of assurance for integrity
as an ordinary post-election scrutineering process, since a related compromise of
the Core Voting System and the Verification Service could undetectably alter
votes. For instance, the Verification Service could simply lie to the voter about
what vote was recorded on their behalf. Then the Core Voting System and
Verification System could show consistent misrepresented votes to the Auditor.

The process for Auditing is incompletely described, so it is not clear whether a
related compromise of the Core Voting System and the Auditor would also suffice
to alter votes undetectably. A simple potential attack would be for the auditor to
turn a blind eye to inconsistencies between the Core Voting System’s data and
the Verification Server’s. Would this be caught? The Security Implementation
Statement [26] refers to some independent parties being allowed to observe some
parts of the audit process and receive some software, but it does not say exactly
what data they may check.

Votes that were present on the verification server (and possibly verified) could
subsequently be removed if the voter re-registered or voted via another channel.
It is not clear from the published system description how or whether the auditor
(or anyone else) could verify that only the correct votes were removed.

A compromised web server or Voice Server (i.e. the IVR system for phone
voting) could perform the attack from Section 4.1 on last-minute votes just as
easily as a compromised web client. This would be a low-risk attack, since the
malicious server would know that the verification server would be turned off
before the voter could perform verification and detect this. 4

There are important inconsistencies between the code and the documentation
describing how votes are encrypted. Early iVote documents [22], including The
iVote System Overview, describe them as being encrypted with the Receipt
Number; the Security Implementation Statement [26] describes them as being

4 In the case of the web server, this would require forging a signature attached to the
vote by the client. This signing step is evident in the JavaScript, but we could not
find any documentation on how the signing key was derived or how the signature
was verified. Hence we do not know whether a compromised web server could have
simply created a new signature on any vote it received, or whether it would have
needed to modify the JavaScript served to the client in order to get a valid signature
on an altered vote.

The New South Wales iVote System: Security Failures 13

encrypted using the ElGamal public key encryption system with the public
keys of the Election and Verification Servers. Our inspection of the JavaScript
used by iVote clients indicates that neither description is completely accurate:
votes are encrypted using a “digital envelope” which consists of a randomly-
generated symmetric key, encrypted once each with the Election and Verification
Servers’ ElGamal public keys, plus the vote choices encrypted with AES using
the symmetric key. This has implications for both the privacy and the integrity
of the system. Furthermore, the deviation of the actual code from the published
specifications, particularly for such a central aspect of the voting protocol, raises
broader questions about the accuracy of the published descriptions of iVote.

5.2 Privacy

The iVote approach of having voters telephone a third-party server to have
their votes read back to them is unprecedented, either in Australia or (to our
knowledge) elsewhere in the world. It introduces many different opportunities
for privacy breaches and coercion after voting that do not exist in traditional
paper-based voting.

For instance, a criminal could offer money in return for iVote verification
credentials that produced the desired vote from the verification server, or a
coercer could threaten punishment if such credentials are not provided. As noted
by McKay [21], such an attacker could use the Receipt Server to check that the
voter had not revoted to change their selections. Such attacks could originate
anywhere in the world, and vote buying could even be automated—imagine a
Tor hidden service that offered Bitcoin payments for proper votes.

Although the iVote design appears to give up on using technology to protect
against vote buying and coercion, the system employs elaborate privacy measures
to try to separate the voters identity from their ballot internally. Encryption
alone does not guarantee vote privacy, as the vote must eventually be counted
somehow. Some electronic voting systems, including the Norwegian Internet voting
system [14], use verifiable mixing in order to hide the link between the decrypted
vote and the encrypted form submitted by the voter.5 The “cryptographic
envelope” form of encryption used in iVote does not seem conducive to these
privacy-preserving tabulation methods. It is therefore crucial for privacy that the
voter’s identity cannot be reconnected with her symmetrically-encrypted vote,
which seems to remain in the same recognizable form throughout the process.

iVote tries to achieve this by storing various items of unique or private
data in various different parts of the system, and the Security Implementation
Statement [26] makes reference to associations between these being destroyed.
However, compared to traditional postal ballots, for which the physical separation
of the voter’s identity from the ballot can occur irrevocably, the destruction
of electronic links is much more difficult to achieve. This is especially true if

5 Some also use homomorphic tallying, but that would not work for Australian (prefer-
ential) voting.

14 Halderman and Teague

components of the system are compromised or malfunctioning in ways that allows
data to be observed, recorded, or transferred elsewhere.

Unfortunately, there are several critical places in the system where compro-
mised components or malicious insiders could potentially associate voter identities
with ballot contents. For example:

1. In the polling-site version of iVote, voters register and then vote via the same
machine. This creates a single point of attack, as their identity and their vote
are both present.

2. All the phone communications, including voting and verifying by IVR system,
are potentially susceptible to eavesdropping if the encryption used by the
phone company is weak or absent. This is particularly serious since both
voting and verification involve transmitting the ballot contents over this
channel, and since many voters use identifiable telephone numbers.

3. A compromise of the registration server, which knows the link between an
individual’s iVote ID and name, could be combined with only one other
compromise (of the Verification Server, Voice Server, or possibly the Auditor)
to link the name to the decrypted vote.

4. The verification server has simultaneous access to the voter’s ballot contents
and iVote ID. If the voter accesses the service in a way that reveals their
identity (for example, with a phone that has caller ID), then the verification
server has all the information necessary to link the voter to their vote.

5.3 Usability and operations

iVote suffered other problems during the election period. The system was sus-
pended for six hours because two minor parties had been left off the “above the
line” section of the ballot. The problem, blamed on human error, was fixed—but
not before 19,000 votes had been cast.

Other commentators (e.g., [16]) drew attention to serious usability problems
with the ballot interface, which was very similar to the practice ballot design
shown in Figure 5. For instance, some voters reported difficulty navigating the
ballot, which required scrolling horizontally and vertically to access all 24 party
groups and 394 candidates. Scroll bars failed to appear on some browsers, and
the red arrows at the top of the screen had no effect. The “Continue” button with
the right-pointing arrow ended the voting session and took the voter to a review,
rather than advancing to the next part of the ballot as might be expected.

These problems would seem to suggest that the system’s core voting func-
tionality was not adequately tested prior to deployment.

6 Lessons

Security: the difficulty of correcting known problems in time, and
unknown problems at all

iVote’s vulnerability to the FREAK and Logjam attacks illustrates once again
why Internet voting is hard to do securely. The system had been in development

The New South Wales iVote System: Security Failures 15

Fig. 5. iVote suffered from problems beyond security. Two parties were mistakenly
left off the “above the line” section of the ballot for the first 19,000 votes, and the
ballot interface (which required scrolling both horizontally and vertically to access all
394 candidates) was criticized for usability problems.

for years, but FREAK was made public about two weeks before the election.
New vulnerabilities are discovered regularly in software and protocols that an
Internet voting system depends on for its security, including web browsers and
TLS. When this happens near election day, there may not be time to ensure that
election servers and voters’ clients are properly retested and patched.

Moreover, mechanisms for trying to ensure that correct software is running
in the voting system conflict with the necessity for rapid patching. A last minute
change to fix one serious problem could introduce new vulnerabilities—as hap-
pened in Washington, D.C. [34]—or could conceal a deliberate attempt at fraud.

The ability to test for and patch such problems assumes they are publicly
known, but attackers may also have access to unpublished “zero-day” vulnerabil-
ities for which, by definition, no patches yet exist. This was the case for us with
Logjam, which would have allowed us to compromise iVote connections to all
popular browsers during the election. It is sheer luck that NSWEC’s method of
removing the vulnerability to FREAK also protected iVote from Logjam, as the
attack was not disclosed publicly until two months later. The only responsible

16 Halderman and Teague

assumption is that there are more major HTTPS vulnerabilities waiting to be
discovered and perhaps already known to sophisticated attackers.

Fragility: standard web development practices are inadequate for
critical applications such as elections

Many pieces of software contribute to a typical web application experience,
including off-the-shelf server software and library code and, commonly, packages
such as analytics tools that are loaded from third-party services. While reliance
on such components might be appropriate for a blog or even an e-commerce
site, they are often not engineered to the level of security that is required for
critical, high-risk applications. (Indeed, analytics software has been shown to leak
critical private information in certain online banking systems [27].) Given the
economic and foreign policy stakes involved in the outcome of a large election,
such contests need to be treated as national security matters, which require a
wholly different technical approach than typical IT systems.

Moreover, the decision to import code from a third party into the election
system creates the possibility for that party to attempt to undermine the system.
Even if the PiwikPro server had not been vulnerable to man-in-the-middle attacks,
anyone with administrative access to that server (whether legitimate or otherwise)
would have been able to mount the same attack. Insider threats represent some
of the most insidious security risks, and reliance on external code greatly expands
the set of insiders who are able to affect the security of the election, adding
possibly unknown employees of third-party service providers.

Verifiability: when does an advertised verification mechanism truly
provide verifiable evidence of a correct election outcome?

Although some schemes do provide genuine electronic election verification re-
motely, including Helios [3], Remotegrity [35], and Pretty Good Democracy [28],
achieving this in a privacy-preserving way requires real verification work from the
voter. Such techniques hold promise for the future, and have been used successfully
in elections with relatively educated voters and low stakes [4]. However, extending
these techniques to state-level elections remains impractical for now, and issues
such as voter authentication and usability remain especially problematic. New
South Wales is particularly challenging on these fronts, since it has no public
key infrastructure and requires voters to number multiple preferences on a ballot
with 394 candidates.

Considering these limitations of state-of-the-art verification schemes, it is not
surprising that the iVote verification mechanism was vulnerable to circumvention.
It was not based on any peer-reviewed end-to-end verifiable scheme, and there
was no detailed public review to allow such problems to be pointed out prior
to the election. When an Internet voting system is claimed to be verifiable, this
claim should be supported with a clear argument based on a complete description
of the system. Otherwise the verification protocol itself could be incomplete,
erroneous, or open to manipulation.

The New South Wales iVote System: Security Failures 17

7 Conclusion

We discovered serious flaws in the iVote online voting system that would have
allowed a malicious attacker to expose voters’ secret ballots, substitute replace-
ment votes, and sidestep the verification mechanism. Despite years of planning,
development, and pre-election security assessment, the system was susceptible
to both publicly known and zero-day vulnerabilities that were at our disposal
during the state election. These findings demonstrate yet again why conducting
Internet voting with existing security technologies poses grave real-world risks.

NSWEC’s decision to keep the system’s source code and detailed design secret
prevented independent analysts like us from being able to bring these specific
problems to the officials’ attention before the election. Even now, we cannot know
whether there are other critical flaws in the iVote software and protocols that
would be evident if the relevant details were made public.

We recommend that NSWEC and others avoid large-scale Internet voting
deployments until there are fundamental advances in computer security that can
appropriately mitigate the risks. If Internet voting tests must proceed, future
tests should firmly restrict eligibility to voters unable to vote via a more secure
channel; incorporate genuine, peer-reviewed verification mechanisms; ensure that
the design and implementation are made openly available for rigorous indepen-
dent scrutiny; and include a clear public statement of the risks to voter privacy
and electoral integrity.

Elections should produce not only an outcome but also sufficient evidence
supporting that outcome. This is the reason for Australia’s tradition of transparent
electoral processes, as well as for more recent research on auditable and verifiable
elections. In the case of the 2015 New South Wales state election, there is neither
evidence that the vulnerabilities we discovered were exploited nor adequate proof
that they were not. A demonstrable vulnerability exposing a large number of votes
to potential manipulation constitutes a serious failure of the electoral process.

Acknowledgments

The authors thank David Adrian, Ed Felten, Rajeev Goré, Nadia Heninger, Harri
Hursti, and Liz Minchin for assistance during this project. For their support and
encouragement after we made our results public, we would also like to thank a
tremendous community of election integrity scholars and advocates, including
but not limited to: Duncan Buell, David Dill, Joseph Hall, Candice Hoke, David
Jefferson, Noel Runyan, Ronald Rivest, Barbara Simons and Pamela Smith.

This material is based in part upon work supported by the U.S. National
Science Foundation under grants CNS-1345254 and CNS-1409505, and by the
Morris Wellman Faculty Development Assistant Professorship. Any opinions,
findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the National Science
Foundation.

18 Halderman and Teague

References

1. ABC News. Computer voting may feature in March NSW election, Feb.
2015. http://www.abc.net.au/news/2015-02-04/computer-voting-may-feature-in-
march-nsw-election/6068290.

2. O. Abendan. How DNS changer Trojans direct users to threats. In Trend Micro
Threat Encyclopedia, 2012.

3. B. Adida. Helios: Web-based open-audit voting. In 17th USENIX Security Sympo-
sium, Aug. 2008. https://vote.heliosvoting.org.

4. B. Adida, O. De Marneffe, O. Pereira, and J.-J. Quisquater. Electing a university
president using open-audit voting: Analysis of real-world use of Helios. In Electronic
Voting Technology Workshop (EVT), 2009.

5. D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman,
N. Heninger, D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow,
S. Zanella-Béguelin, and P. Zimmermann. Imperfect forward secrecy: How Diffie-
Hellman fails in practice, May 2015. https://weakdh.org/.

6. H. Ballani, P. Francis, and X. Zhang. A study of prefix hijacking and interception
in the Internet. In Proceedings of ACM SIGCOMM, Aug. 2007.

7. S. Bell, J. Benaloh, M. D. Byrne, D. DeBeauvoir, B. Eakin, G. Fisher, P. Kortum,
N. McBurnett, J. Montoya, M. Parker, et al. Star-vote: A secure, transparent,
auditable, and reliable voting system. The USENIX Journal of Election Technology
Systems, 1 (1), pages 18–37, 2013.

8. B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss,
A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue. A messy state of the union:
Taming the composite state machines of TLS. In 36th IEEE Symposium on
Security and Privacy, 2015.

9. O. Bilodeau and T. Dupuy. Dissecting Linux/Moose: The analysis of a Linux router-
based worm hungry for social networks, May 2015. http://www.welivesecurity.com/
wp-content/uploads/2015/05/Dissecting-LinuxMoose.pdf.

10. R. Carback, D. Chaum, J. Clark, J. Conway, A. Essex, P. S. Herrnson, T. Mayberry,
S. Popoveniuc, R. L. Rivest, E. Shen, et al. Scantegrity II municipal election at
Takoma Park: The first E2E binding governmental election with ballot privacy. In
Proceedings of the 19th USENIX conference on Security, pages 19–19. USENIX
Association, 2010.

11. C. Culnane, P. Y. A. Ryan, S. Schneider, and V. Teague. vVote: A verifiable
voting system. ACM Transactions on Information and System Security. To appear.
Technical Report at http://arxiv.org/abs/1404.6822.

12. Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman. Tracking
the FREAK attack. https://freakattack.com/.

13. Estonian Internet Voting Committee. Statistics about Internet voting in Estonia,
May 2014. http://www.vvk.ee/voting-methods-in-estonia/engindex/statistics.

14. K. Gjøsteen. The norwegian internet voting protocol. In E-Voting and Identity,
pages 1–18. Springer, 2012.

15. N. Hastings, R. Peralta, S. Popoveniuc, and A. Regenscheid. Security consider-
ations for remote electronic UOCAVA voting. National Institute of Standards
and Technology, NISTIR 7770, Feb. 2011. http://www.nist.gov/itl/vote/upload/
NISTIR-7700-feb2011.pdf.

16. A. Heber. There’s a huge design flaw in the NSW online voting system
which Labor wouldn’t be happy about. Business Insider Australia, Mar. 28
2015. http://www.businessinsider.com.au/theres-a-huge-design-flaw-in-the-nsw-
online-voting-system-which-labor-wouldnt-be-happy-about-2015-3.

http://www.abc.net.au/news/2015-02-04/computer-voting-may-feature-in-march-nsw-election/6068290
http://www.abc.net.au/news/2015-02-04/computer-voting-may-feature-in-march-nsw-election/6068290
https://vote.heliosvoting.org
https://weakdh.org/
http://www.welivesecurity.com/wp-content/uploads/2015/05/Dissecting-LinuxMoose.pdf
http://www.welivesecurity.com/wp-content/uploads/2015/05/Dissecting-LinuxMoose.pdf
http://arxiv.org/abs/1404.6822
https://freakattack.com/
http://www.vvk.ee/voting-methods-in-estonia/engindex/statistics
http://www.nist.gov/itl/vote/upload/NISTIR-7700-feb2011.pdf
http://www.nist.gov/itl/vote/upload/NISTIR-7700-feb2011.pdf
http://www.businessinsider.com.au/theres-a-huge-design-flaw-in-the-nsw-online-voting-system-which-labor-wouldnt-be-happy-about-2015-3
http://www.businessinsider.com.au/theres-a-huge-design-flaw-in-the-nsw-online-voting-system-which-labor-wouldnt-be-happy-about-2015-3

The New South Wales iVote System: Security Failures 19

17. N. Heninger. Factoring as a service. Crypto 2013 rump session. https://www.cis.
upenn.edu/∼nadiah/projects/faas/.

18. D. Kaminsky. Its the end of the cache as we know it. In Toorcon, 2008.
19. R. Kusters, T. Truderung, and A. Vogt. Clash attacks on the verifiability of e-voting

systems. In 33rd IEEE Symposium on Security and Privacy, pages 395–409, 2012.
20. M. Marlinspike. New tricks for defeating SSL in practice. Black Hat, 2009.

http://www.thoughtcrime.org/software/sslstrip/.
21. R. McKay. Flaws in iVote’s re-vote process which attempts to defeat coercers.

http://www.bigpulse.com/governmentelections#changevoteflaw. BigPulse.
22. NSW Electoral Commission. Index of iVote reports. http://www.elections.nsw.gov.

au/about us/plans and reports/ivote reports.
23. NSW Electoral Commission. iVote: Frequently asked questions. https://www.ivote.

nsw.gov.au/faq.aspx.
24. NSW Electoral Commission. NSW 2015 legislative council election - final distribu-

tion of preferences.
25. NSW Electoral Commission. iVote threat analysis and risk assessment, Jan.

2014. http://www.elections.nsw.gov.au/ data/assets/pdf file/0008/175760/NSW
Election - iVote Threat Analysis and Risk Assessment v3.0.pdf.

26. NSW Electoral Commission. iVote system security implementation statement,
Mar. 2015. http://www.elections.nsw.gov.au/ data/assets/pdf file/0007/193219/
iVote-Security Implementation Statement-Mar2015.pdf.

27. O. Räisänen. The bank deal. http://oona.windytan.com/pankki.html.
28. P. Y. Ryan and V. Teague. Pretty good democracy. In Security Protocols XVII,

pages 111–130. Springer, 2013.
29. B. Segaard, D. A. Christensen, B. Folkestad, and J. Saglie. Internettvalg: Hva gjør

og mener velgerne?, 2014. https://www.regjeringen.no/globalassets/upload/kmd/
komm/rapporter/isf internettvalg.pdf.

30. D. Springall, T. Finkenauer, Z. Durumeric, J. Kitcat, H. Hursti, M. MacAlpine,
and J. A. Halderman. Security analysis of the Estonian Internet voting system. In
ACM Conference on Computer and Communications Security (CCS), Nov. 2014.

31. V. Teague and J. A. Halderman. Security flaw in New South Wales puts thousands
of online votes at risk. Freedom to Tinker blog post, Mar. 22 2015. https://
freedom-to-tinker.com/blog/teaguehalderman/ivote-vulnerability/.

32. V. Teague and J. A. Halderman. Thousands of NSW election online votes open
to tampering. The Conversation, Mar. 23 2015. https://theconversation.com/
thousands-of-nsw-election-online-votes-open-to-tampering-39164.

33. Victorian Electoral Commission. Report to Parliament on the 2010 Victorian State
election; Section 11: Statistical overview of the election, 2011. http://www.vec.vic.
gov.au/files/ER-2010-Section11.pdf.

34. S. Wolchok, E. Wustrow, D. Isabel, and J. A. Halderman. Attacking the Washing-
ton, D.C. Internet voting system. In 16th International Conference on Financial
Cryptography and Data Security (FC), Feb. 2012.

35. F. Zagórski, R. T. Carback, D. Chaum, J. Clark, A. Essex, and P. L. Vora. Re-
motegrity: Design and use of an end-to-end verifiable remote voting system. In
Applied Cryptography and Network Security (ACNS), pages 441–457. Springer, 2013.

https://www.cis.upenn.edu/~nadiah/projects/faas/
https://www.cis.upenn.edu/~nadiah/projects/faas/
http://www.thoughtcrime.org/software/sslstrip/
http://www.bigpulse.com/governmentelections#changevoteflaw
http://www.elections.nsw.gov.au/about_us/plans_and_reports/ivote_reports
http://www.elections.nsw.gov.au/about_us/plans_and_reports/ivote_reports
https://www.ivote.nsw.gov.au/faq.aspx
https://www.ivote.nsw.gov.au/faq.aspx
http://www.elections.nsw.gov.au/__data/assets/pdf_file/0008/175760/NSW_Election_-_iVote_Threat_Analysis_and_Risk_Assessment_v3.0.pdf
http://www.elections.nsw.gov.au/__data/assets/pdf_file/0008/175760/NSW_Election_-_iVote_Threat_Analysis_and_Risk_Assessment_v3.0.pdf
http://www.elections.nsw.gov.au/__data/assets/pdf_file/0007/193219/iVote-Security_Implementation_Statement-Mar2015.pdf
http://www.elections.nsw.gov.au/__data/assets/pdf_file/0007/193219/iVote-Security_Implementation_Statement-Mar2015.pdf
http://oona.windytan.com/pankki.html
https://www.regjeringen.no/globalassets/upload/kmd/komm/rapporter/isf_internettvalg.pdf
https://www.regjeringen.no/globalassets/upload/kmd/komm/rapporter/isf_internettvalg.pdf
https://freedom-to-tinker.com/blog/teaguehalderman/ivote-vulnerability/
https://freedom-to-tinker.com/blog/teaguehalderman/ivote-vulnerability/
https://theconversation.com/thousands-of-nsw-election-online-votes-open-to-tampering-39164
https://theconversation.com/thousands-of-nsw-election-online-votes-open-to-tampering-39164
http://www.vec.vic.gov.au/files/ER-2010-Section11.pdf
http://www.vec.vic.gov.au/files/ER-2010-Section11.pdf

	The New South Wales iVote System:Security Failures and Verification Flawsin a Live Online Election

