
1 

 

  THE LEAGUE OF WOMEN VOTERS OF SOUTH CAROLINA 

                                           PO Box 8453, Columbia, SC, 29202, (803) 251-2726, www.lwvsc.org 

 
Unsafe for Any Ballot Count: 

A Computer Scientist’s Look at the ES&S iVotronic in Light of 
Reports from Ohio, California, and Florida 

Prepared for the League of Women Voters of South Carolina by Duncan Buell 
14 January 2008 

Executive Summary 
The states of Florida and Ohio have conducted analyses of the ES&S iVotronic voting 
machine and its accompanying system and software.  California has conducted a similar 
analysis of other voting machines.  California and Ohio have decertified the use of  
Direct Recording Electronic (DRE) voting machines; the machine no longer certified in 
Ohio is the same machine (except possibly for precise model and software revision 
numbers) as is used in South Carolina. 
 
The main conclusion in the Ohio report is that “…the ES&S Unity EMS, iVotronic DRE 
and M100 optical scan systems lack the fundamental technical controls necessary to 
guarantee a trustworthy election under operational conditions.”   
I believe the analysis done in Ohio and the strong conclusions drawn in that state‟s 
report fully justify a recommendation that South Carolina stop using the iVotronic 
machines absolutely as soon as possible, preferably before the November 2008 
elections. 
 
The Ohio report concluded that “[t]he firmware and configuration of the ES&S precinct 
hardware [the iVotronic] can be easily tampered with in the field,” that “[t]here are 
exploitable weaknesses in virtually every election device and software module,” and that 
there are “practical attacks that can be mounted by almost any participant in an 
election.” 
 
The South Carolina State Elections Commission has insisted that their security 
procedures make trustworthy elections with the iVotronic possible in South Carolina.  
Quite to the contrary, the Ohio analysis teams specifically tried to “identify practical 
procedural safeguards that might substantially increase the security of the ES&S system 
in practice,” but “ultimately failed to find any such procedures that we could 
recommend with any degree of confidence.” 
 
I believe the SCSEC position to continue using the iVotronic requires them first to 
reject in its entirety the Ohio analysis and report.  This is, I believe, completely 



2 

 

unwarranted.  Many of the flaws found in password protocols and in software 
design are truly fundamental and longstanding errors one finds in badly designed 
systems or in code written by naïve programmers.  That these errors should appear 
in a commercial voting machine system speaks volumes negatively about the 
iVotronic and its designers.  This system has not been designed with security as a 
basic requirement, and it should not be used for voting in South Carolina. 

 
Background 

Introduction 
This is written in an attempt to explain for laypeople the meaning and import of the 
recent reports from Florida [YASINSAC] and Ohio [EVEREST] that analyzed the ES&S 
iVotronic Direct Recording Electronic (DRE) machine, and the California report 
[CALIFORNIA] that analyzed a different ES&S machine.  I will write somewhat 
informally in an attempt to get the message across.  My initial audience is the state 
board of the League of Women Voters of South Carolina and the county elections 
commissioners of South Carolina. 
 
A Personal Statement 
I am not a Luddite when it comes to election machinery.  I happen to believe that the 
technology does exist, in terms of protocols and procedures that could be turned into 
machines, for conducting secure and reliable elections.  I do not know of an extant 
commercially-marketed machine that implements such a protocol, however.   The 
technology exists, but machines have not been built, and thus none of the existing 
“electronic” machines can be considered acceptable. 
 
I am also not a conspiracy theorist.  I believe that the South Carolina State Elections 
Commission wants to hold secure and reliable elections, but I believe they are reluctant 
to face the fact that they have gone down a path that is embarrassing to them and to the 
state and they now must reverse course to change the machinery on which we vote and 
reverse the adoption decision of a few years ago.  The decision to purchase the ES&S 
machinery may in fact have been defensible when the machinery was bought.  The 
decision to continue using this machinery, in light of the report from Ohio, is 
indefensible. 
 
I happen to believe strongly in the “software independence” recommendation put 
forward by the National Institute of Standards and Technology (NIST) Technical 
Guidelines Development Committee [BURR, RIVEST].  We have all lived long enough 
now in a world managed by the ubiquity of computer-controlled systems to know that 
software is apparently very hard to write properly and that computers do in fact fail.  
The principle of software independence is that there should be some other mechanism 
besides yet more software for verifying the ballot counts stored in a voting machine. 
 
I also believe strongly that, even if we have doubts about the security of the process, we 
must vote.  It is only by voting that we gain the standing to challenge later the use of the 



3 

 

ES&S machines.  If we choose now not to vote, we give up the right to complain about 
the process. 
 
Finally, it is worth addressing the basic question of a statewide standard for a voting 
machine, which has both benefits and disadvantages.  The clear disadvantage is that if 
an attacker wanted either to corrupt or to disrupt an election in South Carolina, he/she 
would need only corrupt one system.  This means that extraordinary care must be taken 
in protecting the elections process and ensuring the security of the machines.  On the 
other hand, elections are generally run with a very limited budget and with volunteers as 
poll workers conducting the elections, so there is a great benefit in a statewide system 
that will allow for more standardized training.  There is no inherent reason not to put all 
the eggs into one basket provided one properly cares for that basket. 
 
Caveat 
There is always the possibility that the precise model of machine or the precise version 
of software used in South Carolina differs from what has been examined in Florida, 
California, and Ohio.  Mention is made, for example, of the fact that a three-letter 
password for one version of software will be upgraded to a six-letter password in some 
pending version of the software. 
 
On the one hand, this says that some of the conclusions drawn might not be entirely 
correct. 
 
On the other hand, the problems and the security flaws described in the reports are so 
absolutely fundamental that they call seriously into question the judgment of the 
company and its system designers.   Based on the very elementary nature of the security 
flaws, I believe it is entirely reasonable to conclude that ES&S as a company cannot be 
trusted to produce a secure and reliable voting machine product.  If I as a homeowner 
call in a security company to burglar-proof my house, and then I have to tell the 
company not to install the security door with the hinges on the outside, the company 
gets no bonus points for correcting the improper installation, and I would have ample 
reason to question any of the other security judgments that company made.  Some 
things are just that simple, and most of the errors in the reports are of this nature. 
 
Assumptions and Background 
Some basic assumptions and constraints must be pointed out that make elections and 
election machinery different from a lot of other similar things. 
 
First, we have to point out the obvious.  No one—not the candidates, nor the political 
parties, nor the electorate, nor the elections commission--ever knows the actual results 
of the elections.  All that is known is what the official ballot count is declared to be.  This 
may or may not be the actual ballot count, and those declared the winners may or may 
not be those for whom the most votes were cast. 
 



4 

 

This obvious constraint is due to the requirement for anonymity in balloting.  There is 
no mechanism for verifying that the votes as they are counted are indeed the votes as 
they are cast.  Since we do not know the answer to the voting question, we must take 
every step possible to make sure that the process by which we arrive at an answer is 
foolproof. 
 
The second constraint is the fact that elections are one-time events, and thus there is no 
way to conduct a proper “scientific” experiment with a tested environment and a control 
environment.  The same election held on two successive days would, except perhaps in 
very tiny towns with only a handful of voters, result in different ballot totals.  We don't 
get “do-overs” in elections. 
 
This second constraint imposes a second “system” requirement, and that is that the 
process of conducting the election must not interfere with the ability of voters to cast 
ballots.  We could require a very secure and verifiable process for collecting ballots, but 
if it that process is so slow or so cumbersome as to discourage voting, then it cannot be 
used.  Similarly, we must ensure that the process cannot be sabotaged on election day, 
because we don't get a second chance to run the same election.  A system that is 
insufficiently reliable even without the threat of sabotage is also unacceptable; we must 
ensure an extremely high probability that things will run smoothly. 
 
I am often asked why we can't make voting machines work when in fact we can make 
ATMs work.  These two constraints highlight the difference between machinery for bank 
card or credit card transactions and machinery for elections.  The first major difference 
with ATM-like transactions is that the user does not have anonymity, but rather has just 
the opposite.  A user who makes a transfer of funds, for example, that shows up as a 
debit to one account without the proper credit to another account, can easily expose 
their identity to the bank in order to clear up the error.  Further, in the case of such 
transactions, there are a great many laws protecting consumer rights. 
 
No such protection exists for voting.  The better analogy for voting is not with bank 
transactions but for slot machine transactions in a casino.  When one puts money in the 
slot machine, one has no guarantee that the machine won't just take the money.  One 
has no individual guarantee that one's transaction has been properly chosen randomly 
as a winner or loser. 
 
And indeed this analogy has been made by a computer scientist from Nevada who has 
experience both with gaming industry regulation in Nevada and with electronic voting 
machines in Nevada [KUBILUS].  At the very least, the regulations governing slot 
machines in Nevada could be copied nationally for voting machines. 
 
Security Through Obscurity 
Much of the problem with all DREs is that the technology is proprietary rather than 
open to all to view.  Both ES&S and SCSEC have advertised that the proprietary nature 
of their technology adds to security.  This is called the “security through obscurity” 



5 

 

argument, and it is absolutely rejected by any and all security experts.  It is a strong 
negative statement about the technological maturity of the SCSEC that they would ever 
have advertised this as a benefit. 
 
Kerckhoffs' principle, enunciated in 1883 by Auguste Kerckhoffs, is that a cryptographic 
system should be immune from weakness even if its entire structure is known.  The 
security comes from the algorithm, not the possibility that the cryptographic system is 
kept secret from the opposition.  Claude Shannon restated this as “the enemy knows the 
system,” and Bruce Schneier (the author of the Blowfish algorithm used in the 
iVotronic) applies this to security systems in general:  “every secret creates a potential 
failure point.” 
 
Another view of security through obscurity is this, and it is the principle applied by the 
U.S. government:  We keep secret as much as we can, but we do that on top of and not 
instead of the inherent security in the system. 
 
Finally, we present the skeptic‟s view of security.  In 2004 there was something like a 
billion dollars spent in the combined presidential campaigns.  If we are to rely in any 
way on security through secrecy and proprietary technology, then we must assume that 
nowhere in the manufacturing process, the software writing, the software updating, the 
printing of the use or repair manuals, the marketing, or anywhere in the chain from the 
state and county elections commissions anywhere in the country is there a conscience 
that can be bought.  With a billion dollars going into the process, I think it's utterly 
foolish to assume that it would be impossible to find someone who could be bought for a 
million dollars or so skimmed off the bottom of a stack of cash.  It just doesn't make 
sense. 
 
The Rivest Committee Report to NIST 
In the late fall of 2006 the Technical Guidelines Development Committee submitted a 
report on voting machines to the NIST Elections Assistance Commission responsible for 
voting standards.  Prominent in the recommendations of that committee was the 
(justifiable in my opinion) rejection of any machine that did not have a software 
independent means for verifying the vote count [BURR, RIVEST]. 
 
What this means is the following.  In a DRE such as the iVotronic, with no paper trail, 
the only record of the votes cast is the electronic record stored in the flash memory in 
the iVotronic itself.  It is true that one can apply a number of fail-safe techniques to 
ensure that the electronic record is not corrupted and that the record is consistent.  (In 
the iVotronic, for example, there are three identical records that are constantly checked 
against each other; if the records are not found to be the same, the machine is assumed 
to be malfunctioning and a warning is signaled that the machine should be taken out of 
use.) 
 
However, there is in the iVotronic no ballot record that is independent of software.  
There is no paper ballot to be counted a second time.  A second count in the iVotronic 



6 

 

could only be done by reading the memory chips a second time.  That read would be 
done by software, just as it was software that put the record in the chips.  This does not 
make the “recount” a process that is independent of the process that did the first count.  
 

The Analyses of the iVotronic Machines 
The Florida Report 
The first indication of problems in the iVotronic comes in the Florida report prepared 
with Alec Yasinsac of Florida State University as lead author [YASINSAC].  This report 
was prepared in response to a challenge in the 13th Congressional District in the 2006 
election.  In that election, there was a huge undervote reported for the congressional 
election, and the challenge to the election included a suggestion that the iVotronic 
machines had either failed or had been tampered with. 
 
The Florida report had a very narrow scope, namely to determine whether the 
legitimacy of the election result in the 13th district could be called into question by 
problems with the iVotronic machines themselves.  They did not, for example, concern 
themselves with general security issues, nor did they concern themselves with the ES&S 
Unity software running at county headquarters doing the aggregation of vote counts 
from the individual precincts. 
 
The Florida report did not find a reason to believe that foul play had occurred.  The 
conclusion with respect to the 13th district election was that a poorly designed ballot 
image had made it too easy to overlook the existence of that election contest on the same 
ballot screen as a much higher profile race. 
 
However, Appendix D on passwords, found on pages 66-67 of the report and included 
here as Appendix A to this document, includes several troubling findings.  The “modem 
password” and the “override password” can be set at the Unity server when the election 
is configured by the county.  If the modem password is not set at the county level, it has 
a default value that is hard coded into the source code and that is the same for all 
machines across the United States. 
 
All other passwords (there are five of them) are fixed, hard coded in the source code, 
and are the same for all machines anywhere in the United States.  In one of the great 
understatements of the 21st century, Yasinsac writes, “This represents poor practice.” 
 
Further, four of these passwords are three letters long and are case insensitive.  (By case 
insensitive is meant that “the”, “thE”, “tHe”, “The”, “tHE”, “ThE”, “THe”, and “THE” 
would all be the same password.)  In the words of the report, “Each one is chosen to be 
mnemonic and easy to remember.  The problem is that they are also likely to be fairly 
easy to guess.  They follow a memorable pattern.  Someone who knows one of these 
passwords can probably guess what the other ones are without too much difficulty.  
These passwords provide very little security.”  (In a discussion of this with a colleague in 
my department we both came to the conclusion that this description means that the 
passwords are probably something like “ABC”, “DEF”, and “GHI”.) 



7 

 

 
Two of the four passwords mentioned above allow one to replace the existing software 
on the iVotronic, perhaps inserting malicious code, changing votes in any direction, or 
infecting the machine with a virus. 
 
In the words of the report, “Our judgment is that the password mechanisms on the 
iVotronic are poorly conceived and poorly implemented.  The consequence is that the 
passwords by themselves do not do a good job of preventing unauthorized individuals 
from accessing critical system functions.” 
 
Finally, there is a special kind of Personalized Electronic Ballot (PEB), called the Factory 
Test PEB (later called the Factory Quality Assurance PEB in the Ohio report).  This is 
distinguished from all other PEBs by only a single character that is sent to the iVotronic 
when the PEB is inserted in the slot.  The special value is hard coded into the software 
(and thus probably the same value for all machines produced across the country).  
Anyone who knows this one-character value, has access to another PEB and can 
program that PEB, can reprogram the PEB to send the Factory Test character instead of 
the regular PEB character.  By doing this, all password codes are bypassed and the user 
has full access to the machine for uploading/changing the software, loading or changing 
votes cast, etc.  This is referred to in the Florida report as an “undocumented backdoor”.  
When such a PEB is used, the log of activity is written as if the correct passwords had 
been provided by an ordinary PEB. 
 
An Aside:  What Does This Mean? 
Let me try to explain what is meant by some of these security flaws.   First, what does it 
mean to say that the passwords are hard-coded into the software, that the passwords are 
stored in the clear, or that there is a back door into the machine? 
 
When a computer scientist says that something is hard coded, it means that the source 
code of the program explicitly contains the information.  The source code might look 
something like this: 
 
prompt  “Please enter the password:” 

display the prompt 

password  get password from the console 

if( password = “abc”) then 

  allow access 

else 

  prevent access 

 
In this case the password, namely the string “abc,” literally and specifically appears in 
the near-English text of the computer program.  If as an attacker I can get access to the 
source code, then I can discover the password.  It is usually the case that even if I get 
access only to the executable version of the program (the “dot exe” file on Microsoft 



8 

 

Windows machines), the string “abc” will appear in the clear as “abc” in the dot exe file 
and can be read as plain English.  This is a very insecure way of doing business.  And in 
order to change the password (from “abc” to “def”, for example), it is necessary to load a 
completely new version of the software.  Since reloading software would have to be done 
on all machines in a jurisdiction, this is a painful process that would be done only very 
infrequently or else there would be complications of conflicting versions of the software. 
 
A somewhat more secure, but still not truly secure, approach is to store the password in 
a file on the computer.  The source code might now look like the following. 
 
prompt  “Please enter the password:” 

display the prompt 

userinput  get password from the console 

storedpassword  get actual password from the file 

if( userinput = storedpassword) then 

  allow access 

else 

  prevent access 

 
At least now the actual password is not stored as a string of characters in the program.  
The password can be changed by changing the stored file, but the program need not 
change.  This is somewhat more secure, but if the password in the file is stored as plain 
text, then an attacker can discover the password by looking in the file.  (I actually did 
this once as part of a computer security consulting job I had.  I had been called in with a 
colleague by a company to investigate whether there was malfeasance on the part of the 
computer systems staff.  In the middle of the night, with the chief of physical security 
next to us, we uncovered the main system password in the clear in the appropriate file 
and proceeded to dump the system logs.) 
 
The Right and Proper Way to maintain password security is not to maintain any 
passwords as plain text in the system.  On my Linux server at work, the /etc/passwd 

file might have an entry 
 buell:7nksfN2%w23 

that was the password entry for my computer account.  But my password is not the 
string 7nksfN2%w23.  Rather, that string is an encrypted version of my password.  

When I change my password, the new password is encrypted and it is the encrypted 
version that is stored in the /etc/passwd file1.  Then when next I try to login (or when 

anyone tries to log in to my account), I provide my password to the password checking 
program.  My input is then encrypted, and the encrypted version is compared against 
the encrypted string 7nksfN2%w23.  If there is a match, I am allowed to log in.  If not, I 

must try again. 

                                                 
1  Actually, these days it is usually the /etc/shadow file but it is often still referred to as /etc/passwd. 



9 

 

 
This is in fact an excellent example of the use of Kerckhoffs‟ principle.  Nothing in the 
process or the system is hidden from anyone.  The only secret is my password.  Anyone 
in the world dealing with a Unix/Linux system knows to go look in /etc/passwd for 

account names and passwords.  Anyone in the world knows that Unix/Linux systems 
have handled passwords with this mechanism since at least the late 1970s.  The 
encryption algorithm is even published2.  All the security is centered on the power of the 
encryption algorithm and on my ability to keep my password a secret. 
 
And this kind of password mechanism is not rocket science; it is high school material.  I 
can almost see in my mind‟s eye a ninth-grader at a science fair looking up at me3 and 
sheepishly admitting that he or she had stored passwords hard coded in the clear in the 
program.  “Yes,” I would be told, “I know it‟s a dumb thing to do, but I wanted to 
concentrate on other things and I ran out of time.”  For 36 million dollars, we in South 
Carolina deserve better than something a ninth grader would admit was a dumb 
mistake. 
 
So much for password systems.  What about back doors?  It is not at all uncommon that 
a computer or software vendor will build a back door into a system during the 
development process.  In geekspeak, this would be referred to as a means by which a 
systems person could declare to the software “I am god.  Let me in.”  There are good 
reasons for doing something like this.  If a software developer has to go through a 
lengthy (but secure) login process to get to the testing phase for his or her work, then the 
entire development process can be slowed unnecessarily.  If one is developing the actual 
password checking program, then it might be advisable to have a way to circumvent 
password checking just in case something disastrous happened.  (For example, if the 
/etc/passwd file gets corrupted on disk, then perhaps no one could ever get in to the 

system.)  The purpose of the back door is to speed the development process and to allow 
for the possibility of a showstopping error while in development. 
 
Back doors, however, should always be carefully documented.  If left undocumented, 
they represent a serious failure point in the security system.  I remember a lawsuit from 
the 1980s.  A customer had bought a software package with a back door of which they 
were unaware.  When someone broke in through the back door and caused financial 
mayhem to the customer‟s business, the customer sued the vendor on the basis that they 
should have been told about the potential security hole so they could take steps to 
disable that “feature”. 
 
The 2007 Ohio Report 
Now we come to the December 2007 report from the Secretary of State for Ohio 
[EVEREST, MICROSOLVED1, MICROSOLVED2, MICROSOLVED3].  This report 

                                                 
2  From the man page on my server: “The UNIX System encryption method is based on the NBS DES algorithm 

and is very secure.  The size of the key space depends upon the randomness of the password which is selected.” 

3  Literally, not necessarily figuratively; I am taller than most ninth graders. 



10 

 

covers the iVotronic as well as several other electronic devices.  I will address only that 
part of the report that refers to systems using the iVotronic; this is Part II, pages 27-99.  
In what follows here, page numbers will refer to the EVEREST report [EVEREST].  This 
was the result of source code analysis and penetration testing done by a team at the 
University of Pennsylvania and by WebWise Security, Inc., in Santa Barbara, California.  
The systems analyzed (both the iVotronic and the M100 optical scan system) consisted 
of nearly 670,000 lines of code in twelve programming languages and running on five 
hardware platforms. 
 
For the first time, we have in the Ohio report an analysis of the complete election and 
ballot-counting process.  The Florida report specifically notes that its scope was limited.  
The Ohio report includes not just the iVotronic hardware but the Unity software system 
used at the county (or equivalent) level for collecting ballot counts. 
 
This report is utterly devastating in its conclusions.  I will begin by quoting from the 
executive summary (pages 29-30, included as Appendix B): 
 

“Our analysis suggests that the ES&S Unity EMS, iVotronic DRE and M100 
optical scan systems lack the fundamental technical controls necessary to 
guarantee a trustworthy election under operational conditions. 
 
“The firmware and configuration of the ES&S precinct hardware can be 
easily tampered with in the field. 
 
“Access to administrative and voter functions are [sic] protected with 
ineffective security mechanisms. 
 
“Many of the most serious vulnerabilities in the ES&S system arise from the 
incorrect use of security technologies such as cryptography. 
 
“…taken as a whole, the security failures in the ES&S system are of a 
magnitude and depth that, absent a substantial re-engineering of the 
software itself, renders [sic] procedural changes alone unlikely to 
meaningfully improve security.  Nevertheless, we attempted to identify 
practical procedural safeguards that might substantially increase the 
security of the ES&S system in practice.  We regret that we ultimately failed 
to find any such procedures that we could recommend with any degree of 
confidence. 
 
“The security failings of the ES&S system are severe and pervasive.  There 
are exploitable weaknesses in virtually every election device and software 
module, and we found practical attacks that can be mounted by almost any 
participant in an election.” 

 



11 

 

For reference, we mention here that the Unity system that is referred to is the Windows-
based election management software suite.  One feature of this report from Ohio is that 
it is the first time that the entire Unity suite has been analyzed and reported upon. 
 
I believe that much of this document is self explanatory, so I will simply quote 
extensively. 
 

(page 50)  “Access to the iVotronic DRE configuration is protected by 
several hardware and password mechanisms, all of which can be defeated 
through apparently routine poll worker (and in some cases voter) access.” 
 
“In spite of the proprietary nature of the “official” PEB, we found it to be 
relatively simple to emulate a PEB to an iVotronic or to read or alter the 
contents of a PEB using only inexpensive and commercially available 
[infrared]-based computing devices (such as Palm Pilot PDAs and various 
mobile telephones).” 
 
(page 51) 
“Many of the more sensitive iVotronic administrative functions (closing 
the polls, clearing the terminal, etc.) require the entry of passwords in 
addition to the insertion of a a supervisor PEB.  However, there is a special 
Quality Assurance (QA) PEB type recognized by the iVotronic firmware 
that behaves essentially as a supervisor PEB but that, when used, does not 
require the entry of any passwords.  This PEB does not appear to have 
been described or documented in any of the ES&S manuals or training 
materials provided to our review.” 
 
“Because PEBs themselves enforce no passwords or access control 
features, physical contact with a PEB (or sufficient proximity to activate its 
magnetic switch and [infrared] window) is sufficient to allow reading or 
writing of its memory.” 
 
“An attacker who has access to a precinct‟s main PEB when the polls are 
being closed can alter the precinct‟s reported vote tallies, and, as noted in 
Section 6.3, can inject code that takes control over the county-wide back-
end system (and that thus affects the results reported for all of a county‟s 
precincts).” 

 
As another indication of the quality of the hardware as designed, the report states that 
the mechanical locks “were uniformly of very low-security designs that can easily be 
picked or otherwise bypassed.”  On the other hand, this turned out to be a positive thing 
for the analysis, as was stated in a footnote:  “For the first weeks of the project, we did 
not have the correct keys for much of the equipment; we frequently had to pick the locks 
in order to conduct our analysis.” 
 



12 

 

The Unity software has buffer overflow errors (this is a very common software error, to 
which the iVotronic is also subject) that allow, for example, a single PEB returned from 
a single precinct to compromise an entire county‟s election:  “Note that because these 
vulnerabilities affect the central counting system, a corrupted media attack conducted 
from any single precinct [italics in the original] can corrupt results for the entire county.  
We have successfully implemented PEB-based attacks against Unity (at the University of 
Pennsylvania and at WebWise) and have confirmed that such attacks represent a 
readily-exploitable threat…” (page 53) 
 
It is worth going into a slight digression about buffer overflows, which apparently are 
absolutely all over the place in the ES&S system.  These are perhaps the most common, 
most well-known, and easiest to fix of all computer software bugs that negatively affect 
security.  When the Robert Morris worm brought down the internet in November of 
1988, the public network systems at my previous job went down along with the rest.  By 
mid-afternoon we had word from Pittsburgh (by the predecessor of the CERT 
organization that is now the center of internet attack analysis and prevention) that it 
was a buffer overflow in the sendmail program.   One of my colleagues immediately 

responded, “That‟s cheating.  We knew all about that bug.”  It says a great deal about 
ES&S‟s software people, and all of it is negative, that a software error that has been a no-
no for more than twenty years, and which is detected by many programs that will 
analyze code for security flaws, seems to be prevalent in all software modules and on all 
the hardware platforms in the voting system. 
 
A further comment about Unity is this:  “… there are many potential vulnerabilities that 
can be mitigated only through careful, expert system management.  Unfortunately, the 
precise requirements for using Unity in a networked Windows environment are not 
specified by ES&S, and appear to be left to individual counties to manage without 
specific guidance.”  We note that the rules in South Carolina for security for elections are 
not subject to a FOIA request, so we have no idea in South Carolina what general 
computer security policies are mandated nor whether they are practiced.  This appears 
as a theme in the California reports as well and is a problem not just for ES&S but for 
other vendors—the focus is on the first step in the ballot-counting process, namely the 
voting machines themselves, and then the vendors are silent when it comes to advising 
election authorities on secure configurations of the computers used downstream to 
aggregate the vote counts at the county level. 
 
Finally, we mention the ineffective use of cryptography:  “The iVotronic DRE uses 
cryptography to protect data stored on the PEB and the [Compact Flash] card.  … 
Unfortunately, the manner in which the encrypted data is stored on the PEBs effectively 
neutralizes the cryptographic protection.  The PEB contains [an Election Qualification 
Code (EQC)], encoded using an unkeyed (non-cryptographic) algorithm.  The EQC is 
used to encrypt the [cryptographic] key, which is used to encrypt the rest of the data on 
the PEB.  That is, although much of the data on the PEB is encrypted, there is 
unencrypted information stored along with it that allows an attacker to easily discover 
the key.” 



13 

 

 
This again is a common problem for systems that are not designed from the very 
beginning to be highly secure.  The best cryptographic algorithm in the world is only as 
secure as is the protocol for managing the cryptographic keys, and it is often the case 
that the key management system is the weak link.  A comment on the Ohio report says 
that the ES&S key management is like locking a secret in an unbreakable safe and then 
painting the combination on the outside. 
 

Conclusions 
What can we conclude from all this? 
 
Two conclusions are, I believe, entirely warranted.  First of all, we should accept the fact 
that the Ohio analyses have been done by experts and that they describe realistic 
exploits that could be mounted against the iVotronic and the downstream system that 
aggregates votes from iVotronic machines.  Many, perhaps most, of the vulnerabilities 
are not just “reports and studies produced in the sterile environment of the laboratory” 
[WHITMIRE].  In fact, the Ohio analysis considered procedural changes (such as have 
been alleged to be sufficient in South Carolina) and specifically says that procedural 
changes alone are “unlikely to meaningfully improve security.” 
 
Second, I believe the password flaws, the buffer overflow errors, the flimsy physical 
locks, and similar complaints, allow us to be justified in asserting that ES&S is not 
competent to produce voting machines that should be used in elections.  These are 
simple, standard, naïve errors.  They are exactly the kinds of errors that students are 
taught how to avoid in an undergraduate university computer science course, and the 
ES&S machine, as analyzed by Ohio, would not get a passing grade.  The machine as 
produced and sold should be a great embarrassment to ES&S.  That they continue to 
defend what they have built indicates to me that they are unwilling to admit that they 
have not followed standard security practices and are unwilling to change so as to follow 
them in the future. 
 
The machines should be decommissioned by South Carolina and replaced absolutely as 
soon as possible. 
 

A Positive Recommendation 
I am often asked what I am for, given that I am against the iVotronic and similar 
software-only DREs.  Here is my response. 
 
At present, we have a number of companies who have manufactured hardware for 
electronic voting machines.  Nearly all of these (or indeed perhaps all of them) have 
proprietary technology that can be understood only in a limited way if at all, and all the 
machines are rather different from one another. 
 



14 

 

This is a horrible way to run something as important as elections.  We get a bunch of 
very different machines, so in order to verify their security and reliability we have to 
examine a number of different kinds of problems, and yet we only get to see the details 
under a Non-Disclosure Agreement or other controlled circumstances.  This makes it 
hard to test for security and hard to compare one product against another, and it makes 
every security test a completely new exercise. 
 
A better approach would be this:  The U.S. National Institute for Standards and 
Technology should be mandated (by Congress) to promulgate a standard.  Vendors 
would then have to build to that standard.  In this way, we would have a benchmark 
against which to test.  Any vendor could make a machine, but the basic rules of 
operation and the basic security requirements would be the same.  This 
recommendation would make full use of NIST in its standards-making capacity and 
would require vendors then to concentrate on how best they could manufacture to the 
standard.   The governments and the states would get the added benefit of institutional 
memory when it comes to testing, since the errors and flaws would be held up against a 
common standard that would carry forward in time from one machine and from one test 
to the next. 
 

References 
 
BURR:  W. Burr, J. Kelsey, R. Peralta, and J. Wack, “Requiring software independence 

in VVSG 2007:  STS recommendations for the TGDC”, Draft report to NIST, 
November 2006.  Available at 
http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf, last 
accessed 9 January 2008. 

CALIFORNIA: website for the Secretary of State Debra Bowen 
http://www.sos.ca.gov/elections/elections_vsr.htm, last accessed 9 January 
2008. 

COMPUWARE2003:  Compuware Corporation, “Direct Recording Electronic (DRE) 
Technical Security Assessment Report,” prepared for the Ohio Secretary of State 
Kenneth Blackwell, 21 November 2003. 

COMPUWARE2005:  Compuware Corporation, “ES&S Direct Recording Electronic 
(DRE) and Voter Verified Paper Audit Trail (VVPAT) Technical Security 
Assessment Report,” prepared for the Ohio Secretary of State Kenneth Blackwell, 
4 November 2005. 

EVEREST:  “EVEREST: Evaluation and Validation of Election-Related Equipment, 
Standards and Testing,” prepared for the Ohio Secretary of State Jennifer 
Brunner, 7 December 2007.  Available at 
http://www.sos.state.oh.us/sos/info/everest.aspx, last accessed 9 January 2008. 

HAUG:  Nola M. Haug, “Maryland/Ohio Security Assessments Gap Analysis,” prepared 
for the Ohio Secretary of State Kenneth Blackwell, 26 February 2004.  Available 
at the EVEREST website. 

KUBILUS:  Norbert J. Kubilus, Letter to the editor, ComputerWorld, 30 October 2006. 
 

http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf
http://www.sos.ca.gov/elections/elections_vsr.htm
http://www.sos.state.oh.us/sos/info/everest.aspx


15 

 

MICROSOLVED1:  Microsolved, Inc., “ES&S System:  Executive Summary Report,” 
prepared for the Ohio Secretary of State Jennifer Brunner, 7 December 2007.  
Available at the EVEREST website. 

MICROSOLVED2:  Microsolved, Inc., “ES&S System:  Technical Manager‟s Report,” 
prepared for the Ohio Secretary of State Jennifer Brunner, 7 December 2007.  
Available at the EVEREST website. 

MICROSOLVED3:  Microsolved, Inc., “ES&S System:  Technical Details Report,” 
prepared for the Ohio Secretary of State Jennifer Brunner, 7 December 2007.  
Available at the EVEREST website. 

RABA:  RABA Technologies, “Trusted Agent Report:  Diebold AccuVote-TS Voting 
System,” prepared for the Maryland Department of Legislative Services, 20 
January 2004.  Available at 
http://www.raba.com/press/TA_Report_AccuVote.pdf, last accessed 9 January 
2008. 

RIVEST:  Ronald L. Rivest and John P. Wack, “On the notion of „software independence‟ 
in voting systems,” draft report to NIST, 28 July 2006.  Available at 
http://vote.nist.gov/SI-in-voting.pdf, last accessed 9 January 2008. 

WHITMIRE: Chris Whitmire, speaking for the South Carolina State Elections 
Commission, as quoted in the Greenville (South Carolina) News 5 January 2008. 

YASINSAC:  A. Yasinsac, D. Wagner, M. Bishop, T. Baker, B. de Medeiros, G. Tyson, M. 
Shamos, and M. Burmester, “Software review and security analysis of the ES&S 
iVotronic 8.0.1.2 voting machine firmware,” Florida State University, February 
23, 2007. Web copy at http://election.dos.state.fl.us/pdf/FinalAudRepSAIT.pdf, 
last accessed 7 January 2008.  

 
Biography 
Duncan Buell earned a Ph.D. in mathematics in 1976 from the University of Illinois at 
Chicago and is presently a professor in and chair of the Department of Computer 
Science and Engineering at the University of South Carolina.  Prior to his move to USC 
in 2000, he spent fifteen years with the Institute for Defense Analyses in Bowie, 
Maryland, a research laboratory conducting mathematics and computing research for 
the National Security Agency. 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.raba.com/press/TA_Report_AccuVote.pdf
http://vote.nist.gov/SI-in-voting.pdf
http://election.dos.state.fl.us/pdf/FinalAudRepSAIT.pdf


16 

 

 
 
 
 
 
 

The League of Women Voters, a nonpartisan political organization, encourages informed and active participation in 

government, works to increase understanding of major public policy issues, and influences public policy through education 

and advocacy. Membership in the League is open to men and women of all ages. 

 


