

Voatz
Security Assessment
Volume I of II: Technical Findings
March 12, 2020

Prepared For:
Bradley Tusk | Tusk Philanthropies Nimit Sawhney | Voatz
btusk@tuskholdings.com ns@voatz.com

Aileen Kim | Tusk Philanthropies Sheila Nix | Tusk Philanthropies
akim@tuskstrategies.com sheila@tuskholdings.com

Prepared By:
Stefan Edwards | Trail of Bits JP Smith | Trail of Bits
stefan.edwards@trailofbits.com jp@trailofbits.com

Dan Guido | Trail of Bits Evan Sultanik | Trail of Bits
dan@trailofbits.com evan.sultanik@trailofbits.com

Changelog:
February 21, 2020: Final report delivered
March 2, 2020: Added fix log
March 11, 2020: Added additional responses from Voatz

mailto:btusk@tuskholdings.com
mailto:ns@voatz.com
mailto:akim@tuskstrategies.com
mailto:sheila@tuskholdings.com
mailto:stefan.edwards@trailofbits.com
mailto:jp@trailofbits.com
mailto:dan@trailofbits.com
mailto:evan.sultanik@trailofbits.com

Executive Summary 5

Project Dashboard 8

Engagement Goals 11
Client-Side Questions 11
Backend Questions 11
Communications Protocol Questions 12
Procedural Questions 12

Timeline of Asset Discovery and Delivery 13

Coverage 17

Security Properties and Questions 19
Client-Side 19

Does the client-side security in this system provide reasonable tamper protection?
19
Is sensitive information stored on the client safe? 19
Does the Voatz app use or collect any location data? If so, why? 19
Does the Voatz app have appropriate security controls to ensure a user who leaves
their device unattended is not further compromised? 20
Is the AndroidManifest.xml configuration sufficient? Does it allow unencrypted
traffic or device backups where it should not? 20
Is SIM swapping sufficient to steal a voter's account? 20

Backend 20
Are requests appropriately time-throttled at the API endpoints? 20
Can resources be exhausted by forcing the backend to store large strings/data? 20
Does the system properly block devices so other devices on the same network will
not be blocked? 21
Exactly how is the authentication data associated with the unique ID later assigned
to each voter? Is the mapping predictable? 21
How does the system prevent voters from being identified by the approximate time
of their vote, i.e., the time at which their ballot was recorded on the blockchain? 21
How does Voatz ensure that multiple voters do not vote from the same phone? 21
Do all cryptographic functions use cryptographically secure sources of randomness?
21
Are nonces chosen properly for Voatz’ AES/GCM implementation? 22
Is the nimsim.com domain properly registered to prohibit malicious transfer? 22
How are Voatz employees prevented from looking up a specific voter's ballot? 22
How does the system handle arbitrarily large write-ins? 22
What if a voter's voting data is too large to fit in a QR code receipt? 22

© 2020 Trail of Bits Voatz Security Assessment | 1

Are elements reflected on the administrative web interface susceptible to cross-site
scripting attacks? 22

Communications Protocol 23
Does each client use certificate pinning to communicate with the Voatz backend? 23
Does the Voatz backend use certificate pinning to communicate with third party
APIs (e.g., Jumio)? 23
Is SSL configured securely? 23
Is sensitive information in requests encrypted? 23
Are the encryption schemes used in communication sufficient? 23

Procedural 24
Can voting data be de-anonymized? If so, how? 24
Can a user trigger a ban for an account/device that is not their own? 24
How does Voatz prevent double-voting? 24
Does the system properly handle two devices that both try to register as the same
voter? 25
Are spoiled ballots appropriately spoiled? Can a user ever force a spoiled ballot to
be counted? 25
If a voter's “anonymous code” on their ballot/receipt is compromised, can it allow
the attacker to overwrite or invalidate their vote? Could an attacker vote in place of
the original voter? What remediation exists here? 25
Is Voatz “E2E-V”? 26
Can a voter independently verify that their ballot receipt is valid? 26
Does Voatz satisfy Smyth, et al.’s notion of verifiability? Can the public independently
validate that their votes were tallied correctly? 26
Are Voatz votes fungible between elections? 26
When a voter requests a receipt, what unique ID does the voter use to identify their
ballot? 26
How does Voatz implement the “mixnet” anonymization described in the Voatz FAQ?
26

Recommendations Summary 27
Short Term 27
Long Term 32

Findings Summary 35

Backend Findings 39
1. Device IDs not validated against inner request device IDs 39
2. Amazon admin password is hardcoded in source file 41
3. Non-Anonymous ballot receipts are encrypted with AES-CBC using hardcoded key
and IV 42
4. Secrets are stored in environment variables sourced from bash script 43

© 2020 Trail of Bits Voatz Security Assessment | 2

5. API for the onboarding workflow prohibits partitioning cloud resources for
concurrent elections 44
6. Receipt and affidavit filename collisions 45
7. A voter can unregister another voter’s device 46
8. Input keying material for AES GCM encoding is sent to Graylog 48
9. Voatz backend SSL key has a subdomain wildcard 49
10. Clients can specify their own audit token 50
11. Test parameters in the registration APIs can bypass SMS verification 51
12. QR code receipt generation will fail for large non-anonymous ballots 52
13. Session token validation ignores idle timeout 53
14. Receipt encryption is weak and can leak confidential information 54
15. Insufficient device ID validation on backend 55
16. Potential resource exhaustion via logging/storage of unsanitized data 57
17. Resource exhaustion via specially crafted Zimperium threats 58
18. Zimperium checks on the backend are a blacklist, not a whitelist 60
19. AES-GCM key/nonce/tag encryption system breaks authenticity 61
20. Unauthenticated ECDH is vulnerable to key compromise impersonation 62
21. AES-GCM keys, nonces, and “tag”s are encrypted using AES-ECB 63
22. Voatz API server lacks OCSP stapling 64
23. Empty ballots are not recorded in Hyperledger 65
24. Database root credentials stored in git 66
25. Signed voter affidavits are sent to an administrative email 67
26. AES-GCM AAD usage is nonstandard 68
27. Session cookie expiration offset is a hardcoded literal 69

Android Findings 71
28. Encrypted application data is trivially brute-forceable 71
29. PBDKF2 provides insufficient security margin for PIN codes 73
30. Third-party apps can capture the Android client screen and read screenshots taken
from the client 74
31. Android release build signing key password and keystore password stored in git 75
32. A malicious website can read from the Android client’s internal storage 76
33. Insufficient Android deviceId construction 77
34. Android client does not use the SafetyNet Attestation API 78
35. Android client does not use the SafetyNet Verify Apps API 79
36. Certificate pinning is only configured for the main Voatz domain 80
37. No explicit verification of the Android Security Provider 81
38. Jumio Netverify API credentials stored in git 82
39. Google Services API key stored in git 83
40. A malicious website may be able to execute JavaScript within the Android client 84

© 2020 Trail of Bits Voatz Security Assessment | 3

iOS Findings 85
41. The iOS client does not disable custom keyboards 85
42. The iOS client does not use system-managed login input fields 86
43. iOS client keychain items are not excluded from iCloud and iTunes backups 88
44. Cryptographic credentials are not generated in the iOS Secure Enclave 89
45. iOS client disables App Transport Security (ATS) 90
46. iOS client is vulnerable to object substitution attacks 92
47. An iOS user can lose their registration 93
48. iOS client is susceptible to URI scheme hijacking 94

A. Vulnerability Classifications 95

B. Review of Prior Security Assessments 97
1. July 2018 97
2. October 2018 97
3. December 2018 98
4. October 2019 98
The MIT Report 98

B.1 Side-channel information leak 100
B.2 Voter disenfranchisement via network disruption 100
B.3 On-device security circumvention 101
B.4 GUI modification and data exfiltration 101
B.5 PIN cracking 102
B.6 Server compromise 102

C. Insufficient validation of encrypted API requests 103

D. Verifiability and Voatz 107
End-to-end verifiability 107
Verifiability notions for e-voting protocols 107

E. Fix Log 109
Finding status 109
Detailed fix log 113
Unaddressed findings and unverified fixes 116

© 2020 Trail of Bits Voatz Security Assessment | 4

Executive Summary
On December 18th, 2019, Tusk Philanthropies and Voatz engaged Trail of Bits to review the
security of the Voatz mobile voting platform. Trail of Bits conducted this assessment over
the course of twelve (12) person-weeks with five (5) engineers working from commit hash
3443f4a of the Voatz Core Server repository, commit hash 07d1adb of the Voatz Android
Client, commit hash d8436c1 of the Voatz iOS client, and commit hash 69d7a8b of the
Voatz Administrative Web Interface.

To the best of our knowledge, this is the first “white-box” assessment of the Voatz system,
and the first assessment to include in its scope the discovery of Voatz Core Server and
backend software vulnerabilities. Our report and any conclusions drawn from it are only
meant to reflect the security of the Voatz solution, not mobile voting in general. Review of
election proceedings, both prior and current, was not in-scope for this assessment.

This report is divided into two volumes:

1. The security assessment’s technical findings
2. A threat model containing architectural and operational findings

The assessment was scheduled to take place from January 21 through February 14, 2020,
but ultimately stretched to February 21, 2020 due to a combination of delays in receiving
code and assets, the unexpected complexity and size of the system, and the associated
reporting effort. The Voatz system has over two dozen components in its architecture. Trail
of Bits’ engineers made their best effort to manually inspect each piece of code; however,
this required each engineer to analyze, on average, almost 3,000 pure lines of code across
35 files per day of the assessment in order to achieve minimal coverage. Trail of Bits was
only provided a backend for live testing on the second-to-last scheduled day of the
assessment, and was asked not to attack or maliciously alter the instance in such a way
that it would deny service to other concurrent audits sharing it. Therefore, almost all of the
findings in this report are the result of manual analysis of the codebase. A detailed timeline
of asset discovery and furnishment is also provided .

The assessment resulted in forty-eight (48) findings, of which a third are high severity,
another quarter medium severity, and the remainder a combination of low, undetermined,
and informational severity. The high-severity findings are related to:

● Cryptography, e.g. , improper use of cryptographic algorithms, as well as ad hoc
cryptographic protocols

● Data exposure, e.g., sensitive credentials available to Voatz developers and
personally identifiable information that can be leaked to attackers, and

© 2020 Trail of Bits Voatz Security Assessment | 5

● Data validation, e.g. , a family of findings related to reliance on unvalidated data
provided by the clients.

The use of the Hyperledger Fabric blockchain mimics the functionality of a distributed
database with auditability. The assessed version of Voatz no longer uses any custom
chaincode or smart contracts; all data validation and business logic are executed off-chain
in the Scala codebase of the Voatz Core Server. Several high-risk findings were the result of
data validation issues and confused deputies in the Core Server that could allow one voter
to masquerade as another before even touching the blockchain.

Storing voting data on a blockchain maintains an auditable record to prevent fraud, but this
comes at the expense of both privacy and increased attack surface. Clients do not connect
directly to the blockchain themselves, and are therefore unable to independently verify
that their votes were properly recorded. Anyone with administrative access to the Voatz
backend servers will have enough information to fully reconstruct the entire election,
deanonymize votes, deny votes, alter votes, and invalidate audit trails.

Other e-voting systems attempt to achieve the best of both worlds—cryptographic
authentication, validation, and nonrepudiation as well as provable privacy—by using exotic
cryptographic schemes like zero-knowledge proofs and forms of secure multiparty
computation. However, these, like proof-of-authority blockchains, are nascent technologies
that are exceedingly hard to implement correctly, as was recently demonstrated by the
failure of Swiss Post’s e-voting experiment . Throughout this engagement, Trail of Bits has
provided assistance to Voatz in navigating this complex trade space to mitigate the risks
presented by voting systems in general and, if possible, avoid issues that have plagued
other experimental voting systems.

Voatz’ code, both in the backend and mobile clients, is written intelligibly and with a clear
understanding of software engineering principles. The code is free of almost all the
common security foibles like cryptographically insecure random number generation, HTTP
GET information leakage, and improper web request sanitization. However, it is clear that
the Voatz codebase is the product of years of fast-paced development. It lacks test
coverage and documentation. Logical checks for specific elections are hard-coded into both
the backend and clients. Infrastructure is provisioned manually, without the aid of
infrastructure-as-code tools. The code contains vestigial features that are slated to be
deleted but have not yet been (TOB-VOATZ-009). Validation and cryptographic code are
duplicated and reimplemented across the codebase, often erroneously (TOB-VOATZ-014).
Mobile clients neglect to use recent API features of Android and iOS (TOB-VOATZ-034
and TOB-VOATZ-042). Sensitive API credentials are stored in the git repositories
(TOB-VOATZ-001). Many of its cryptographic protocols are nonstandard (TOB-VOATZ-012).

There is a great deal of uncertainty and public speculation about Voatz’ implementation
and security properties. Therefore, we sought to investigate a series of questions that

© 2020 Trail of Bits Voatz Security Assessment | 6

https://motherboard.vice.com/en_us/article/zmakk3/researchers-find-critical-backdoor-in-swiss-online-voting-system

would address the overall security posture, guarantees, and behavior of the Voatz system.
The answers to these questions are in the Security Properties and Questions section .

Voatz should immediately address all of the recommendations in the “Short Term” section
of our recommendations summary , especially those related to high-severity issues. High
priority should be given to remediating data sanitization of device IDs, improper use of
cryptography, and overreliance on the authenticity and honesty of client implementations.
Operationally, the system is also in dire need of infrastructure management automation.
Overall, it seems that Voatz is struggling to manage a codebase of its size while
concurrently, manually managing election pilots. We hope that this assessment will
improve the overall security posture of the Voatz system, but there is still a great deal of
work to be done to achieve that goal.

Update: On February 27, 2020, Trail of Bits reviewed fixes proposed by Voatz for the issues
presented in this report. Eight (8) issues were addressed, and forty (40) issues remain partially or
fully unfixed. See a detailed review of the current status of each issue in Appendix E: Fix Log .

© 2020 Trail of Bits Voatz Security Assessment | 7

Project Dashboard
Application Summary

Name Voatz Core Server

Version Git Commit
3443f4aa878719fb60a2bfb358954715158d8af1
Branches: develop

Type Scala

Platforms *nix

Number of Source Files 961

Lines of Code 71k

Lines of Comments 13k

Name Voatz Android Client

Version Git Commit
07d1adba25a471dc460c8e5f37151488cb1e8102
Branches: develop

Type Java, Kotlin

Platforms Android

Number of Source Files 338

Lines of Code 26k

Lines of Comments 2k

Name Voatz iOS Client

Version Git Commit
d8436c1065eadb6e9bcd73ae225c79d604bdf16b
Branches: development

Type Swift

Platforms iOS

Number of Source Files 410

Lines of Code 41k

Lines of Comments 8k

© 2020 Trail of Bits Voatz Security Assessment | 8

Name Voatz Administrative Web Interface

Version Git Commit
69d7a8bbcb38269bd2c553ed48f22763a6079e6f
Branches: develop

Type Angular, TypeScript

Platforms Web

Number of Source Files 353

Lines of Code 30k

Lines of Comments 2k

Name Voatz Auditing Web Portal

Version Unknown; given access to a live instance, but
never received source code.

Type Unknown

Platforms Web

Number of Source Files Unknown

Lines of Code Unknown

Lines of Comments Unknown

© 2020 Trail of Bits Voatz Security Assessment | 9

Engagement Summary

Dates January 21 through February 21, 2020

Method White-box

Consultants Engaged 5

Level of Effort 12 person-weeks

Vulnerability Summary

Total High-Severity Issues 16 ◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼

Total Medium-Severity Issues 12 ◼◼◼◼◼◼◼◼◼◼◼◼

Total Low-Severity Issues 10 ◼◼◼◼◼◼◼◼◼◼

Total Undetermined-Severity Issues 6 ◼◼◼◼◼◼

Total Informational-Severity Issues 4 ◼◼◼◼

Total 48

Category Breakdown

Access Controls 3 ◼◼◼

Configuration 6 ◼◼◼◼◼◼

Cryptography 12 ◼◼◼◼◼◼◼◼◼◼◼◼

Data Exposure 12 ◼◼◼◼◼◼◼◼◼◼◼◼

Data Validation 9 ◼◼◼◼◼◼◼◼◼

Denial of Service 2 ◼◼

Patching 1 ◼

Session Management 3 ◼◼◼

Total 48

© 2020 Trail of Bits Voatz Security Assessment | 10

Engagement Goals
The engagement was scoped to provide a security assessment of Voatz’ entire backend
infrastructure, mobile clients, administrative web interface, and election auditing web
portal.

There is a great deal of uncertainty and public speculation about Voatz’ implementation
and security properties. For example, researchers from Lawrence Livermore National
Laboratory, the University of South Carolina, Citizens for Better Elections, Free & Fair, and
the US Vote Foundation enumerated a series of questions about the security of Voatz in
May, 2019. More recently, researchers at MIT discovered vulnerabilities in the Voatz
Android client and speculated about—but had no proof of—related issues in the backend
implementation (see Appendix B for a detailed discussion of MIT’s findings).

Therefore, we sought to address a series of questions falling into four categories:
Client-Side, Backend, Communications Protocol, and Procedural. The answers to these
questions are in the Security Properties and Questions section .

Client-Side Questions
● Does the client-side security in this system provide reasonable tamper protection?
● Is sensitive information stored on the client safe?
● Does the Voatz app use or collect any location data? If so, why?
● Does the Voatz app have appropriate security controls to ensure a user who leaves

their device unattended is not further compromised?
● Is the AndroidManifest.xml configuration sufficient? Does it allow unencrypted

traffic or device backups where it should not?
● Is SIM swapping sufficient to steal a voter's account?

Backend Questions
● Are requests appropriately time-throttled at the API endpoints?
● Can resources be exhausted by forcing the backend to store large strings/data?
● Does the system properly block devices so other devices on the same network won't

be blocked?
● Exactly how is the authentication data associated with the unique ID later assigned

to each voter? Is the mapping predictable?
● How does the system prevent voters from being identified by the approximate time

of their vote, i.e., the time at which their ballot was recorded on the blockchain?
● How does Voatz ensure that multiple voters do not vote from the same phone?
● Do all cryptographic functions use cryptographically secure sources of randomness?
● Are nonces chosen properly for their AES/GCM implementation?

© 2020 Trail of Bits Voatz Security Assessment | 11

https://cse.sc.edu/~buell/blockchain-papers/documents/WhatWeDontKnowAbouttheVoatz_Blockchain_.pdf

● Is the nimsim.com domain properly registered to prohibit malicious transfer?
● How are Voatz employees prevented from looking up a specific voter's ballot?
● How does the system handle arbitrarily large write-ins?
● What if a voter’s voting data is too large to fit in a QR code receipt?
● Are elements reflected on the administrative web interface susceptible to cross-site

scripting attacks?

Communications Protocol Questions
● Does each client use certificate pinning to communicate with the Voatz backend?
● Does the Voatz backend use certificate pinning to communicate with third party

APIs (e.g. , Jumio)?
● Is SSL configured securely?
● Is sensitive information in requests encrypted?
● Are the encryption schemes used in communication sufficient?

Procedural Questions
● Can voting data be de-anonymized? If so, how?
● Can a user trigger a ban for an account/device that is not their own?
● How does Voatz prevent double-voting?
● Does the system properly handle two devices that both try to register as the same

voter?
● Are spoiled ballots appropriately spoiled? Can a user ever force a spoiled ballot to

be counted?
● If a user's “anonymous code” at the bottom of their ballot/receipt is compromised,

can it allow the attacker to overwrite or invalidate the user’s vote? Could the attacker
vote in place of that user?

● Is Voatz “E2E-V”?
● Can a voter independently verify that their ballot receipt is valid?
● Does Voatz satisfy Smyth et al.'s notion of verifiability? Can the public independently

validate that their votes were tallied correctly?
● Are Voatz votes fungible between elections?
● When a voter requests a receipt, what unique ID does the voter use to identify their

ballot?
● How does Voatz implement the “mixnet” anonymization described in the Voatz FAQ?

© 2020 Trail of Bits Voatz Security Assessment | 12

Timeline of Asset Discovery and Delivery
Asset Date Requested Date Delivered Version

System
Documentation

01/09/2020 01/21/2020

Prior Audit
Reports
(Redacted)

01/09/2020 01/21/2020

Core Server
Backend for
Live Testing

01/09/2020 02/13/2020 This backend is shared
among concurrent audits
and therefore cannot be
used for testing attacks that
could result in corruption
or denial of service

CoreServer
Source Code

01/09/2020 01/23/2020 Commit 3443f4a from
01/22/2020
Given access solely to the
develop branch

Note that on February 6, at
the end of the third week of
our assessment, we
discovered that 883 files
were deleted from the Core
Server git repository
immediately before it was
delivered to us. The
majority of these were
JSON and SQL files used to
seed the databases.
However, the deleted files
also included sensitive API
tokens/secrets/credentials
and documentation that
would have been useful
earlier in the assessment.

Admin Web UI
Source Code

01/09/2020 01/22/2020 Commit 69d7a8b from
01/22/2020
Given access solely to the
develop branch

© 2020 Trail of Bits Voatz Security Assessment | 13

Android Client
Source Code

01/09/2020 01/22/2020 Commit 07d1adb from
01/21/2020
Given access solely to the
develop branch

iOS Client
Source Code

01/09/2020 01/22/2020 Commit d8436c1 from
01/21/2020
Given access solely to the
development branch

Audit Portal
Source Code

01/09/2020 Not Furnished

Cryptographic
Protocol
Documentation

01/27/2020 01/27/2020 Confidential-VMA-
InitialHandshake-
111219-0635-353.pdf

SHA256
2ba9b4102198636e95f54f9
e2d5478040494d67e6700d
9ef96b6040440c59d43

Sample
CoreServer
Apache
Configuration

01/28/2020 02/04/2020 Virtualhost.071.
voatzapi-alpha1.conf

SHA256
b6ea48f5f31d470f218ee42
479fc1c1a6a015b0bd0cee3
a350e9059cb363b507

NIST 800-60
Catalog of
System
Components

01/28/2020 Not Furnished

Hyperledger
Chaincode/
Smart Contract
Source Code

01/29/2020 01/29/2020

Voatz no longer uses any
chaincode or smart
contracts.

SSH Configs 01/29/2020 Not Furnished

AWS Configs 01/29/2020 Not Furnished

© 2020 Trail of Bits Voatz Security Assessment | 14

Apache Configs

01/29/2020 Not Furnished

Access
Credentials for
the Audit
Application

01/29/2020 02/10/2020

ACL and Bucket
Policy for S3
Bucket
vinc2018 in
us-east-1

01/30/2020 02/14/2020

ACLs /IAMs/
Profiles for All
Cloud Assets

01/30/2020 02/14/2020 Additional policy furnished
for the “cpe” S3 bucket, but
nothing else.

Firebase
Security Rules

01/30/2020 02/12/2020 firebase-
securityrules.txt

SHA256
bb16213809bcc3f910812e9
70285987deda327aadc0cb
b6d1440b8a5d78b4cf6

Example
./config/appl
ication-*
MainConfig file
for the
backend

01/30/2020 Not Furnished

iOS .ipa 02/02/2020 02/05/2020 SHA256
5a61d052acb7bd7f42c24e3
c15cc183b673a896155e6f0
6351de0e10a2476e0b

Android .apk 02/02/2020 02/04/2020 SHA256
ed8af86865d9d4886db400f
7df768e805d378fb956955b
1a42258ad8c0821219

Anonymized
MIT Security
Report
Summary
(Appendix B)

N/A 02/06/2020 SHA256
c98d1da408dc083e134833
e46fde848d4bfcec2c9a057
2ed5edfde8fd6697f60

© 2020 Trail of Bits Voatz Security Assessment | 15

Original DHS
CISA HIRT
Assessment
Report

02/20/2020 02/20/2020 SHA256
39d1a3cbb8ded2efb2f83d9
d9434a8bd57ecfb161cb284
606bd68fa8b44b07e1

© 2020 Trail of Bits Voatz Security Assessment | 16

Coverage
Trail of Bits was provided over 168,000 lines of source code across approximately 2,100
files, not including white space, comments, configuration files, and documentation. These
source code files were distributed across four git repositories, implemented in several
different programming languages, and interoperable with each other via REST APIs. The
system is unusually complex, with over two dozen components in its architecture. Trail of
Bits’ engineers made their best effort to manually inspect each piece of code; however, this
required each engineer to analyze, on average, almost 3,000 pure lines of code across 35
files per day of the assessment in order to achieve minimal coverage. The quantity of
findings discovered during this assessment, combined with the complexity of the system,
leads us to believe that other vulnerabilities are latent. Therefore, our main focus was on
the Core Server codebase, as it provides a common interface and attack surface for all of
the other components, followed by the mobile clients.

Trail of Bits was not given a backend for live testing of malicious attack vectors. The
backend instance to which we were eventually given access was only provided on the
second-to-last scheduled day of the assessment. This severely limited our ability to test the
mobile applications in a production-like setting, test attack vectors, and confirm exploit
scenarios on a live system. Therefore, all of the findings in this report are the result of static
analysis of the codebase.

Voatz Core Server. This includes the backend API that handles onboarding, vote
submission, and interactions with MySQL, MongoDB, and Hyperledger. The Core Server
codebase also includes the Receipt Service responsible for generating, storing (S3), and
delivering (Sendgrid) receipts. Trail of Bits was only given a single Apache configuration file
for the Core Server and no other configs. We did not have access to any of the other
system components necessary to run the backend (i.e. , MySQL, MongoDB, Hyperledger,
Zimperium, Sendgrid, Twilio, Names, Jumio, S3, etc.). Therefore, Trail of Bits’ analysis of the
core server was limited to manual analysis of the Scala codebase.

Voatz Android & iOS Clients. Manual analysis of the codebase and automated static
analysis using Data Theorem’s App Secure and MobSF .

Voatz Administrative Web Interface. Manual analysis of the codebase. Without a
sufficient backend to run the admin web portal, and with no running instance to test on,
our ability to test for certain classes of vulnerability, (such as cross-site scripting
attacks [XSS]), was limited.

Voatz Audit Web Portal. We performed manual, client-side testing of a live instance, but
had no access to source code. Our testing was limited to non-harmful attacks since this live
instance was being used for an active audit.

© 2020 Trail of Bits Voatz Security Assessment | 17

https://www.datatheorem.com/products/app-secure
https://github.com/MobSF/Mobile-Security-Framework-MobSF

Figure 1: Dataflow diagram of the Voatz system generated as a result of this engagement

© 2020 Trail of Bits Voatz Security Assessment | 18

Security Properties and Questions
The following is a summary of the security properties tested during this assessment, as well
as security-related questions that have been answered.

Client-Side

Does the client-side security in this system provide reasonable tamper protection?
Except for Zimperium, a commercial library that uses proprietary checks to detect
tampering, there is no tamper protection. Zimperium can be circumvented
(see TOB-VOATZ-029 and B.3). Voatz also uses a complex, custom cryptographic handshake
protocol. However, in a matter of weeks, MIT researchers successfully reverse-engineered
the protocol (see Appendix B). 1

Is sensitive information stored on the client safe?
No, several reasonable measures could have been implemented on both the Android and
iOS clients to better protect the sensitive information stored on them. For example,
third-party apps can surreptitiously take screenshots of sensitive information on the
Android app (see TOB-VOATZ-032). Similarly, the iOS client does not disable custom
keyboards that can (and often do) record and exfiltrate keystrokes (see TOB-VOATZ-040).
Additionally, Voatz data stored in the iOS keychain is not excluded from backup to iCloud or
iTunes (see TOB-VOATZ-043).

The Android app does not use the Google SafetyNet APIs (see TOB-VOATZ-037 and 045),
and it does not explicitly verify that the newest version of the Android security provider is
running (see TOB-VOATZ-034). The clients are also vulnerable to PIN number brute force
attacks (see TOB-VOATZ-048 and B.5). Generally, Voatz lacks protection against malicious
applications that could access sensitive Voatz information, except for that provided by
Zimperium, which can be disabled (see B.3).

Does the Voatz app use or collect any location data? If so, why?
Yes, the mobile clients force the voter to enable location services while the app is running.
During new user onboarding, the voter’s latitude and longitude are sent to the server, and
the server requires these fields to be non-empty in order for the voter to be registered.
These coordinates are resolved via the GeoNames service and saved to MongoDB. User

1 Note that the protocol has been modified since the MIT assessment; it no longer chooses the 57th
generated keypair. However, the chosen key is still deterministic, so the generation of 100 keypairs
provides no additional security. Therefore, the handshake protocol remains functionally identical to
the version reverse-engineered and analyzed by MIT.

© 2020 Trail of Bits Voatz Security Assessment | 19

https://www.geonames.org/

locations for most (if not all) other API requests are also logged to MongoDB. These are
presumably used for auditing suspicious activity. However, accurate location reporting is
predicated on the assumption that the voter has not maliciously tampered with their client.
An attacker with the capability of passive network introspection can determine the location
of a voter’s client, which is potentially sufficient to de-anonymize their vote (e.g. , if a ballot is
cast from home).

Does the Voatz app have appropriate security controls to ensure a user who leaves
their device unattended is not further compromised?
No, sensitive data is trivially recoverable from the Android client and additional, related
controls can be circumvented (see TOB-VOATZ-048 , TOB-VOATZ-018 , and B.5).

Is the AndroidManifest.xml configuration su�ficient? Does it allow unencrypted
tra�fic or device backups where it should not?
The AndroidManifest.xml prohibits cleartext traffic (HTTP) and device backups. It does
request permission for the CALL_PHONE privilege, which appears to be related to a feature
that lets the user call a phone number for live assistance. network_security_config.xml
only pins the certificate for the Voatz domain and not any of the domains of its third-party
services (see TOB-VOATZ-026).

Is SIM swapping su�ficient to steal a voter's account?
Yes, SIM swapping/SS7 attacks are sufficient to steal a voter's account. However, an
attacker must either 1) have access to the voter's email, or 2) have knowledge of the Voatz
API and how to circumvent email-based side-channel verification (see TOB-VOATZ-022).

Backend

Are requests appropriately time-throttled at the API endpoints?
Customer and Organization authentication and onboarding are at least partially throttled,
both by IP and device ID. Additional protections may be provided by Cloudflare.

Can resources be exhausted by forcing the backend to store large strings/data?
We could not test this on a live system since we were not provided with a backend that
could be maliciously attacked in this way. However, there do not appear to be any
protections that would prevent an attacker from storing or logging excessively large fields
in a way that could lead to resource exhaustion. This could take the form of database
storage exhaustion, bloating of logs, slow writing to disk, forcing a long regex query, etc.

© 2020 Trail of Bits Voatz Security Assessment | 20

Does the system properly block devices so other devices on the same network will
not be blocked?
There is IP blacklisting, so a malicious client could block its entire (potentially shared) IP.

Exactly how is the authentication data associated with the unique ID later assigned
to each voter? Is the mapping predictable?
For authentication within the API, voters are uniquely identified by the device ID reported
by their mobile client—currently the device ID reported by their mobile OS. A modified or
custom client can choose whichever ID it likes. Much (but not all) of Voatz’ device ID
processing code sanitizes device IDs, removing symbols, so there is the potential for ID
collisions (see TOB-VOATZ-022). When a user re-registers, they can reset their device ID. In
the re-registration workflow, each user is uniquely identified by their mobile phone
number. The “Anonymous IDs” used for ballots and auditing are generated after a voter
has registered. Vestigial code exists to generate audit tokens from hashed personally
identifiable information from the client, and stores this data alongside a voter’s customer
ID in MySQL. However, the current implementation securely randomly generates audit
tokens on the backend and sends this to the client. The backend does not store the audit
token at all, and has no way of validating that an audit token is one that was officially
generated by the backend. Therefore, Anonymous ID collisions can also be forced
(see TOB-VOATZ-046).

How does the system prevent voters from being identified by the approximate time
of their vote, i.e., the time at which their ballot was recorded on the blockchain?
The Voatz system does not appear to have any mitigation for this type of
de-anonymization. The Voatz FAQ talks about a mixnet for anonymizing votes, but we
found no evidence of a mixnet in the code.

How does Voatz ensure that multiple voters do not vote from the same phone?
Votes are uniquely identified by a device ID, which is specified by
Settings.Secure.ANDROID_ID on Android and identifierForVendor.uuidString on iOS.
However, this device ID will change on iOS if the Voatz app is deleted and then reinstalled
(see TOB-VOATZ-007). This allows two voters to vote on the same iPhone.

Do all cryptographic functions use cryptographically secure sources of randomness?
Yes, they all appear to properly use java.util.SecureRandom on the backend.

© 2020 Trail of Bits Voatz Security Assessment | 21

Are nonces chosen properly for Voatz’ AES/GCM implementation?
No, see TOB-VOATZ-011 and TOB-VOATZ-024 .

Is the nimsim.com domain properly registered to prohibit malicious transfer?
Yes, the domain registration lists the client delete, transfer, update, and renew prohibited
Extensible Provisioning Protocol (EPP) status codes . The domain is registered at GoDaddy
and we did not verify whether 2FA or other mitigations were in place.

How are Voatz employees prevented from looking up a specific voter's ballot?
Anyone with administrative access to a subset of MongoDB, S3, Graylog, and Hyperledger
will have sufficient information to de-anonymize votes. Currently, only two designated
Voatz team members have access to the credentials required to access these production
instances, and they are only accessible from whitelisted IPs in the Voatz offices.

How does the system handle arbitrarily large write-ins?
There do not appear to be protections or limitations against arbitrarily large write-ins.
QR-code receipt generation will fail on sufficiently large ballots (see TOB-VOATZ-009).
However, QR-code receipts are only used in “non-anonymous” elections, which have not
occurred since 2018, and are being phased out by Voatz. The PDF receipt generation does
not appear to be similarly susceptible. A malicious client could potentially deny service to
the server by posting sufficiently large API requests; however, this was not tested by Trail of
Bits and could possibly be thwarted by Voatz’ IP-based and temporal throttling.

What if a voter's voting data is too large to fit in a QR code receipt?
QR-code receipt generation will fail (see TOB-VOATZ-009).

Are elements re�lected on the administrative web interface susceptible to cross-site
scripting attacks?
Many request fields are not sanitized prior to being stored in the database. As a result, the
burden of data validation and sanitization falls on the systems that read the fields,
including the administrative web interface, audit portal, and receipt service. Although a
review of the adminwebui did not identify any problematic reflection of these
client-controlled fields, we cannot rule out the existence of such vulnerabilities. Trail of Bits
was never provided with a copy of the audit portal source code, so we cannot comment on
its resilience to this class of attack.

© 2020 Trail of Bits Voatz Security Assessment | 22

https://www.icann.org/resources/pages/epp-status-codes-2014-06-16-en

Communications Protocol

Does each client use certificate pinning to communicate with the Voatz backend?
TrustKit forces pinning, but only to the main Voatz domain (see TOB-VOATZ-026). Also,
neither voatz.com nor voatzapi.nimsim.com are configured with OCSP Stapling
(see TOB-VOATZ-033). This will eventually become a requirement for apps submitted to the
iOS app store.

Does the Voatz backend use certificate pinning to communicate with third party
APIs (e.g. , Jumio)?
No, Voatz only cert-pins the core Voatz API server (see TOB-VOATZ-026).

Is SSL configured securely?
Not entirely. All of the API endpoints we tested are configured with secure TLS 1.2 cipher
suites. Voatz claims that all TLS traffic is terminated at their Apache instances. However, the
TLS cipher suites returned by the Voatz servers appear to be different from the ones
specified in the sole Apache config furnished to Trail of Bits. This suggests that either the
Apache config is different from the one used in production, or that TLS is being terminated
somewhere before Apache (e.g. , Cloudflare).

Moreover, all of the cloud servers use a shared SSL certificate with a subdomain wildcard,
which could allow an attacker to commandeer the Voatz SSL private key (see
TOB-VOATZ-028). The original Department of Homeland Security CISA HIRT assessment
report from October of 2019 notes that Voatz maintains unpatched honeypots; we were
not given access to these servers, but would recommend that they use distinct SSL
credentials.

Is sensitive information in requests encrypted?
Yes, but with an ad hoc scheme and cryptographic handshake protocol. All API requests are
made using HTTP POSTs over TLS 1.2. Some unique identifiers such as the caller’s device ID
are duplicated both inside and outside of the encrypted data, which can lead to confused
deputy issues since the two are not validated against each other (see TOB-VOATZ-014 and
Appendix C).

Are the encryption schemes used in communication su�ficient?
Sensitive API calls are encrypted using an ad hoc scheme. The cryptography used
throughout the system is non-standard (e.g., TOB-VOATZ-012). Encrypted requests can
often be posted with an arbitrary device ID specified by the client (TOB-VOATZ-014).

© 2020 Trail of Bits Voatz Security Assessment | 23

https://developer.apple.com/videos/play/wwdc2017/701/

Procedural

Can voting data be de-anonymized? If so, how?
Yes, but not necessarily retroactively. The “Anonymous ID” on ballot receipts is a securely
randomly generated “audit token” produced by the backend and sent to the client. The
backend does not store these audit tokens. When a client submits a vote to the backend,
the API request is partially authenticated by the client’s customer ID and device ID, both of
which are linked to the voter’s personally identifiable information. Therefore, a Voatz
administrator with access to the backend server can observe these API requests in real
time and deanonymize votes. If a log is kept of client connections, this could also be
retroactively temporally correlated with votes that were added to the blockchain.

Since the backend does not store a mapping of audit tokens to ballots, there is no way for
votes to be directly retroactively de-anonymized, other than using temporal analysis.

Earlier versions of Voatz used a base64 encoded string containing a voter’s personally
identifiable information, including their name, mobile number, phone number, state, date
of birth, and audit token. This was stored in MySQL. This vestigial implementation still
exists in the codebase, but does not appear to be used in current elections.

Can a user trigger a ban for an account/device that is not their own?
Yes, see TOB-VOATZ-014 and TOB-VOATZ-022 .

How does Voatz prevent double-voting?
At the beginning of an election, Voatz is seeded with a voter roll of all voters eligible for
voting via Voatz, provided by the voting precinct. After a voter casts their ballot, Voatz
records this state in MongoDB, preventing the user from voting again, since this ballot
record is tied to the voter roll in addition to the customer and device IDs. However, these
protections only prevent voters from double-voting through the Voatz app; there is no
protection within the blockchain (e.g., chaincode) that prevents double-voting.

Therefore, anyone who can modify MongoDB can permit a user to double-vote. Similarly,
anyone with access credentials to Hyperledger can record arbitrary votes on the
blockchain. It is incumbent upon the precinct to detect instances of double-voting involving
a voter casting a ballot both through Voatz and via vote-by-mail.

© 2020 Trail of Bits Voatz Security Assessment | 24

Does the system properly handle two devices that both try to register as the same
voter?
Yes. Currently, registering voters are uniquely identified by the combination of their email
address and mobile phone number, both of which are provided by the voting precinct from
voter registration data. The only way a user can register is if they provide an email address
and mobile phone number that matches the data provided by the precinct. If a second
device successfully registers with the same data, the previously registered device will be
unregistered.

Are spoiled ballots appropriately spoiled? Can a user ever force a spoiled ballot to be
counted?
Voatz has no automated capability to spoil a ballot. The protocol for spoiling a ballot is for
the precinct to manually inform Voatz that a voter wishes their ballot to be spoiled. A Voatz
administrator will manually reset the voter’s account in MongoDB, allowing the voter to
re-register from scratch, producing a new anonymous ID and, ultimately, a second ballot.
From an auditor’s perspective, the spoiled ballot and valid ballot will appear as two distinct
ballots from different voters. It is incumbent on the precinct, not Voatz, to properly account
for and discard the first, spoiled ballot.

If a voter's “anonymous code” on their ballot/receipt is compromised, can it allow the
attacker to overwrite or invalidate their vote? Could an attacker vote in place of the
original voter? What remediation exists here?
The “anonymous code” on each ballot/receipt is the user’s “audit token” generated by the
Core Server. This is a base64-encoded string of 64 random bytes concatenated with a
timestamp and base64-encoded again. We discovered that a lack of sufficient data
validation resulted in a high-severity vulnerability in which the client itself can specify an
arbitrary audit token to certain API endpoints, including the endpoint for casting a ballot
(TOB-VOATZ-046). Therefore, if a malicious user with a custom client knows another voter’s
anonymous code, their ballots can be crafted to have the same anonymous code. This will
not cause one vote to overwrite or invalidate another, but it may cause confusion and cast
doubt on the integrity of the election during an audit.

A malicious user with a custom client can also use that same device ID to re-register with
the system. However, the attacker would need to spoil the user’s previous ballot by first
passing another identity check. We discovered one vulnerability in which knowledge of a
voter’s device ID allows an attacker to unregister a voter before they cast their ballot, but it
would not allow the attacker to overwrite or invalidate a user’s pre-existing vote
(TOB-VOATZ-022).

© 2020 Trail of Bits Voatz Security Assessment | 25

Is Voatz “E2E-V”?
No, see Appendix D: Verifiability and Voatz .

Can a voter independently verify that their ballot receipt is valid?
No.

Does Voatz satisfy Smyth, et al. ’s notion of verifiability? Can the public
independently validate that their votes were tallied correctly?
No, it fails the notions of Universal Verifiability and Eligibility Verifiability. The public can
neither validate that all votes were tallied correctly nor can they validate that all votes were
cast by authorized voters. Even for Voatz auditors, it fails the notion of Eligibility Verifiability
since auditors only have access to anonymized votes and must trust that the Voatz system
properly vetted the identities and eligibility of the voters.

Are Voatz votes fungible between elections?
We were unable to discover an attack vector that would allow this. An exploit that would
allow fungibility between elections would likely necessitate voting infrastructure that is
reused between elections. Voatz claims that it manually instantiates new infrastructure
between elections. We were unable to confirm that there are no shared components
(e.g. , S3 buckets or folders in their consumer cloud file hosting provider). The name of the
S3 bucket is hard-coded into the source code and suggests that a single S3 bucket may
have been continuously used between elections since 2018, however, we can neither
confirm this nor, if true, validate whether the bucket was properly expunged between
elections.

When a voter requests a receipt, what unique ID does the voter use to identify their
ballot?
Their device ID. Ballot receipts are also uploaded to an Amazon S3 bucket, unencrypted,
with a filename containing the voter’s audit token reported from the client
(see TOB-VOATZ-020).

How does Voatz implement the “mixnet” anonymization described in the Voatz FAQ?
There does not appear to be, nor is there mention of, a mixnet in the code provided to Trail
of Bits. The core server has the capability to deanonymize all traffic, including ballots.

© 2020 Trail of Bits Voatz Security Assessment | 26

https://eprint.iacr.org/2015/233.pdf
https://eprint.iacr.org/2015/233.pdf

Recommendations Summary
This section aggregates all the recommendations made during the engagement. Short-term
recommendations address the immediate causes of issues. Long-term recommendations
pertain to the development process and long-term design goals.

Short Term
❑ Rebase the git repositories. Remove all sensitive API tokens and secrets.
TOB-VOATZ-001 , 002 , 016 , 017 , and 047

❑ Check whether credentials that were once stored in git are still active. If so, revoke
them and generate new ones. TOB-VOATZ-001 and 002

❑ Replace ECDH and the system’s ad hoc PAKE . Use Noise or a TLS 1.3 handshake
instead. These are authenticated and prevent key compromise impersonation.
TOB-VOATZ-004

❑ Refactor the session cookie expiration offsets. Ensure that they are derived from a
singular definition and can be uniformly refactored across the codebase. TOB-VOATZ-005

❑ Remove all past voting data encrypted with a hardcoded key and IV. Deprecate and
remove the code for non-anonymous elections. Send receipts only over ephemeral
channels with a unique channel key, determined dynamically. TOB-VOATZ-006

❑ Document that an iOS voter can be un-registered by deleting and reinstalling the
Voatz app. Voatz has indicated that this is intended behavior, so voters should be made
aware of their necessity to re-enroll after a reinstall. TOB-VOATZ-007

❑ Check for the null case when obtaining the ANDROID_ID . Document the effects of a
factory reset operation on the Android deviceId , and provide clear instructions for how
voters can remediate the problem if it occurs. TOB-VOATZ-008

❑ Log all QR code generation failures. Alert the voter on failure. TOB-VOATZ-009

❑ Ensure that all backend infrastructure is re-provisioned between elections and not
shared between elections/clients. Each server should also receive its own unique SSL
certificate and credentials. Use infrastructure-as-code tools like Ansible and Terraform to
automate and manage provisioning. TOB-VOATZ-010 and 028

❑ Remove all use of AES-ECB from the codebase. ECB mode is famously insecure and
has neither semantic security nor authentication properties. Replace it with AES-GCM.
TOB-VOATZ-011

© 2020 Trail of Bits Voatz Security Assessment | 27

https://noiseprotocol.org/

❑ Remove the “tag” parameter from all AES-GCM usage. This AAD usage is nonstandard
and potentially dangerous. Additionally, remove code updating the AAD with a null buffer.
TOB-VOATZ-012

❑ Switch to a purpose-built secret management system. Use Vault or Keywhiz . Rotate
all credentials stored with the previous system. TOB-VOATZ-016

❑ Refactor the handling of encrypted requests. Ensure the deviceId used to index the
shared secret used for encryption is validated against the device ID used in the underlying
request. Alternatively, consider removing device IDs from the inner request to preserve
bandwidth and alleviate any device ID conflicts. This will address the family of issues
enumerated in TOB-VOATZ-014 and Appendix C

❑ Do not use PDF encryption. This will greatly enhance the security of receipts at rest.
Replace the use of PDF encryption with age . TOB-VOATZ-015

❑ Re-enable the session token idle timeout. The check is currently commented out.
TOB-VOATZ-018

❑ Validate the deviceId to ensure it is of good form. Block any users who attempt to
register with an invalid device ID. These checks should account for case-sensitivity and the
format of the identifier after the “ and- ” and “ ios- ” prefixes. TOB-VOATZ-019

❑ Move all device ID sanitization and escaping as early as possible in the onboarding
process. Should happen when a device ID is first set. This can avoid device ID collisions.
TOB-VOATZ-020

❑ Ensure that the “admin notice inbox” is large enough to thwart any attempted
spam overrun. If the inbox is controlled by a precinct, they must be made aware of the
necessary protections for this email address. TOB-VOATZ-021

❑ Refactor the re-registration workflow. Always require a second factor of
authentication. It should also not rely on any information provided by the client. This can
prevent one client from un-registering another. TOB-VOATZ-022

❑ Remove log messages containing cryptographic keying material. Ensure that
production instances are configured to run at the highest log level for which the necessary
auditing information is still recorded. TOB-VOATZ-023

❑ Remove all use of AES-ECB from the Voatz system. Instead of multiple levels of AES
with encrypted keys and nonces, simply have one standard AEAD construction.
TOB-VOATZ-024

❑ Properly configure PBDKF2. Update the number of iterations to 50,000. This surpasses
the latest recommendation from NIST and is required given the low entropy of user PINs.
TOB-VOATZ-025

© 2020 Trail of Bits Voatz Security Assessment | 28

https://www.vaultproject.io/
https://square.github.io/keywhiz/
https://github.com/FiloSottile/age

❑ Pin certificates for all third-party APIs. This can be accomplished using TrustKit , and
will prevent man-in-the-middle attacks. TOB-VOATZ-026

❑ Improve documentation and training materials for auditors. Be sure to inform
auditors that a vote cast with an empty ballot will not appear in Hyperledger.
TOB-VOATZ-027

❑ Use different SSL credentials for each nimsim.com subdomain. Ensure that
out-of-date servers are either patched or decommissioned. In the current configuration, if a
single machine is compromised, an attacker can masquerade as the entire domain.
TOB-VOATZ-028

❑ Switch to a server-side anti-tamper check that whitelists clients. For example,
ensure that the client both was not tagged as a threat by Zimperium and attested to
Zimperium in the first place. This, like all anti-tamper protections, is not foolproof.
However, it will at least require an attacker to perform the additional step of spoofing a
valid Zimperium attestation rather than simply allowing them to gain access once
Zimperium is bypassed. TOB-VOATZ-029

❑ Ensure that only known threatId s are stored in the database. A list of known threats
is already tracked by the Voatz backend to determine if a user should be blocked from
authentication. If, instead, Voatz wishes to store all threats so a new threatId could be
added to the list in the future and have any previously reported threats ban the user
retroactively, then additional data validation should be performed on these fields.
TOB-VOATZ-030

❑ Protect all sensitive windows within the App by enabling the FLAG_SECURE flag. This
will prevent malicious third-party apps from recording the Voatz app. This also prevents
screenshots of sensitive information. TOB-VOATZ-032

❑ Update all Voatz servers and mobile clients to enable support for OCSP Stapling.
This will prevent attacks in the event of an SSL certificate revocation. TOB-VOATZ-033

❑ Ensure that the Android Security Provider is up-to-date. On every app startup, run
ProviderInstaller.installIfNeeded() provided by Google Play services. If the Security
Provider remains out of date or an error occurs, this method will throw an exception and
Voatz can decline to run. TOB-VOATZ-034

❑ Prevent all WebViews from reading from internal storage. Explicitly set the
setAllowFileAccess method to false . TOB-VOATZ-035

❑ Explicitly prevent all WebViews from executing JavaScript. Set the
setJavaScriptEnabled method to false . TOB-VOATZ-036

❑ Use the Google SafetyNet Attestation API. This will supplement Zimperium in
assessing the integrity and safety of the user's device. TOB-VOATZ-037

© 2020 Trail of Bits Voatz Security Assessment | 29

https://github.com/datatheorem/TrustKit

❑ Mitigate iOS object substitution attacks. Migrate all classes that use NSCoding to
NSSecureCoding . TOB-VOATZ-038

❑ Mitigate iOS URI scheme hijacking attacks. Confirm that the voatz:// URI scheme is
not used for messaging, and document the code to ensure that it never will be.
TOB-VOATZ-039

❑ Disable third-party keyboards within the Voatz iOS client. This will help prevent
leaking of sensitive data entered by the user. Add the
application:shouldAllowExtensionPointIdentifier: method within the Voatz client’s
UIApplicationDelegate TOB-VOATZ-040

❑ Use the Secure Enclave when performing any cryptographic operation on an iOS
device. This avoids revealing sensitive credentials in memory to the application processor.
TOB-VOATZ-041

❑ Use iOS-managed login input fields. Use the UITextContentType property introduced
in iOS 12 to identify username and password fields. This will allow automated password
generation and management. TOB-VOATZ-042

❑ Ensure that sensitive keychain items are not stored in iCloud and iTunes backups.
Explicitly set a ThisDeviceOnly accessibility class (such as
kSecAttrAccessibleWhenUnlockedThisDeviceOnly) for all keychain items. This will
prevent both Apple, Inc. and attackers from accessing sensitive voter information.
TOB-VOATZ-043

❑ Precisely define the exceptions to ATS that are required. Every required exception
reduces the security of the Voatz app. Minimize your exposure by providing the narrowest
possible exceptions. TOB-VOATZ-044

❑ Use the SafetyNet Attestation API to assess the integrity and safety of the user's
device. Identify and address any server-side issues that require ATS exceptions. Configure
the Attestation API to use the basicIntegrity parameter to support devices that have not
passed CTS certification. TOB-VOATZ-037

❑ Use the SafetyNet Verify Apps API to ensure this feature is enabled and that
harmful apps are not installed on user devices. This supplements malicious app
detection by Zimperium. TOB-VOATZ-045

❑ Validate that the audit tokens provided in client requests are associated with the
voter’s client ID. This will prevent voters from using duplicate audit tokens and help
protect the integrity of the election. TOB-VOATZ-046

❑ Remove all test code from production. Ensure that clients can neither accidentally nor
intentionally trigger test code. TOB-VOATZ-047

© 2020 Trail of Bits Voatz Security Assessment | 30

❑ Encrypt the salt for user PINs and check their device encryption status. Further
protecting the salt and ensuring whole-disk encryption will help mitigate data exposure
risks of the encrypted database on Android clients. TOB-VOATZ-048

© 2020 Trail of Bits Voatz Security Assessment | 31

Long Term
❑ Integrate a tool like truffleHog into your git hooks. This will help prevent sensitive
information from being committed to the repository. TOB-VOATZ-001 , 002 , 016 , and 017

❑ Avoid designing any kind of transport encryption. Use standardized and integrated
frameworks such as Wireguard or TLS 1.3. TOB-VOATZ-004

❑ Review the use of hardcoded literals throughout the codebase. Ensure that
significant variables do not make use of repetitively hardcoded literals, but instead derive
from well-defined constants, configuration-based variables, or otherwise uniform
definitions. TOB-VOATZ-005

❑ Ensure that no encryption uses hardcoded credentials. Use of AES-CBC should be
deprecated in favor of AES-GCM or another AEAD construction. TOB-VOATZ-006

❑ Review all unique identifiers for users. Ensure that the identifiers cannot collide with
one another. Ensure users are made well aware of cases in which these identifiers could
change and affect their voting experience. TOB-VOATZ-008

❑ Provide a more robust means for delivering non-anonymous election receipts to
voters. For example, return multiple QR codes, if necessary. Alternatively, deprecate this
feature and remove all code supporting non-anonymous elections. TOB-VOATZ-009

❑ Revise the onboarding workflow to provide an election identifier from the very
first step. This should allow provisioning of a completely independent backend cloud
infrastructure for each election. TOB-VOATZ-010

❑ Add a cryptographic analyzer to Voatz’ continuous integration process. An analyzer
like Cryptosense can automatically detect the use of insecure algorithms. TOB-VOATZ-011

❑ Carefully audit all cryptographic primitives. Check that their use conforms to their
specification. TOB-VOATZ-012

❑ Ensure that no secrets are stored in either code or environment variables. These
methods are prone to leakage. The use of a secret manager is preferable. TOB-VOATZ-013

❑ Review data validation surrounding requests on the Voatz backend. Ensure a user
cannot submit requests for any accounts/devices but their own, and that malformed data
cannot be provided to the server to invoke resource exhaustion. TOB-VOATZ-014 , 046 , 047 ,
and Appendix C

❑ Carefully audit all symmetric encryption used in the Voatz system. Check for known
vulnerabilities. TOB-VOATZ-015

❑ Improve unit test coverage to test idle timeouts. TOB-VOATZ-018

© 2020 Trail of Bits Voatz Security Assessment | 32

https://www.wireguard.com/
https://cryptosense.com/

❑ Review all API request fields to ensure sufficient data validation is performed. In
cases where malformed data is provided, consider the strength of the evidence as an
indicator that the user is malicious and should be blocked. TOB-VOATZ-019

❑ Transition to unique identifiers that are assigned by the backend. The clients should
not be able to specify their own unique IDs. TOB-VOATZ-020

❑ Transition to a different method for archiving signed affidavits that is not prone to
denial of service. Email is both hard to secure and prone to various forms of denial of
service. TOB-VOATZ-021

❑ Improve unit test coverage to test all edge cases relating to data provided in the
API request. In general, it should never be assumed that a client is not maliciously
modified. TOB-VOATZ-022

❑ Perform a comprehensive audit of the log messages used within the system. Ensure
that they do not contain any sensitive information. TOB-VOATZ-023

❑ Standardize all symmetric encryption in the Voatz system. Use a single AEAD
construction. Remove any use of symmetric primitives other than this construction.
TOB-VOATZ-024

❑ Replace PBKDF2. Other key derivation functions, such as Argon2id and scrypt , are
stronger and more difficult to misconfigure. TOB-VOATZ-025

❑ Audit all network calls made by the application. Maintain a list of domains accessed.
For each domain, ensure calls are only made using TLS with certificate pinning.
TOB-VOATZ-026

❑ Store all ballot oval states in Hyperledger. This will prevent confusion caused by any
empty ballots that are cast, and will provide a richer audit trail on the blockchain.
TOB-VOATZ-027

❑ Ensure that the security of Voatz is not predicated on the authenticity of the
Voter’s client. There is no foolproof way to ensure that a client communicating with the
Voatz backend is authentic or has not been tampered with. TOB-VOATZ-029

❑ Review all requests to ensure proper data validation is performed. Fields should be
limited in length to prevent resource exhaustion attacks. Ensuring proper form will also
prevent attacks from incorrect handling of malformed data. TOB-VOATZ-030 and 031

❑ Ensure that developer documentation is updated to include screen capture and
recording as potential threats for data exposure. TOB-VOATZ-032

❑ Perform certificate revocation exercises. This will ensure the system’s protections are
sufficient and train the Voatz staff on how to react to a compromised SSL credential.
TOB-VOATZ-033

© 2020 Trail of Bits Voatz Security Assessment | 33

https://en.wikipedia.org/wiki/Argon2
https://en.wikipedia.org/wiki/Scrypt

❑ Continue adding anti-tamper and security update protections to the Voatz clients.
TOB-VOATZ-034 and 037

❑ Add tests to ensure malicious websites cannot read from the Android client’s
internal storage. This is currently possible via WebViews. TOB-VOATZ-035

❑ Add tests to ensure malicious websites cannot execute arbitrary JavaScript within
the Android client. This is not currently possible, but if the default behavior of WebViews
ever changes, it could become possible. TOB-VOATZ-036

❑ Require an affirmative ctsProfileMatch result which indicates that the user is in
possession of a device that passed CTS certification. Devices without a CTS certification
possess unknown security risks and are likely to be compromised. TOB-VOATZ-037

❑ Transition from iOS URI Schemes to the newer Universal Links. “Universal
Links,”introduced in iOS 9, allows apps to register web domains that are solely owned by
the app. TOB-VOATZ-039

❑ Stay abreast of changes to iOS that might permit data exfiltration from the Voatz
client. TOB-VOATZ-040

❑ Stay abreast of new cryptographic features added to the iOS SDK. TOB-VOATZ-041
and 042

❑ Empirically validate that no sensitive data is stored to a backup of the Voatz iOS
application. Consider uniform usage of a wrapper, such as Square’s Valet , to simplify
storing and retrieving data from the keychain. TOB-VOATZ-043

❑ Require network encryption that meets the minimum standards of ATS. Identify
and address any server-side issues that require ATS exceptions. TOB-VOATZ-044

❑ Do not require clients to submit data like audit tokens in requests. Instead, perform
a database lookup of their data. TOB-VOATZ-046

❑ Replace the local data encryption with a system based on the Android StrongBox.
This will ensure that local encryption is tied to the user’s device and conducted with the
strongest methods available. TOB-VOATZ-048

© 2020 Trail of Bits Voatz Security Assessment | 34

https://github.com/square/Valet

Findings Summary
Title Type Severity

1 Device IDs not validated against inner
request device IDs

Data Validation High

2 Amazon admin password is hardcoded in
source file

Data Exposure High

3 Non-anonymous ballot receipts are
encrypted with AES-CBC using hardcoded
key and IV

Cryptography High

4 Secrets are stored in environment
variables sourced from bash script

Data Exposure High

5 API for the onboarding workflow prohibits
partitioning cloud resources for
concurrent elections

Configuration High

6 Receipt and affidavit filename collisions Data Validation High

7 A voter can unregister another voter’s
device

Access Controls High

8 Input keying material for AES GCM
encoding is sent to Graylog

Data Exposure High

9 Voatz backend SSL key has a subdomain
wildcard

Configuration High

10 Clients can specify their own audit token Data Validation High

11 Test parameters in the registration APIs
can bypass SMS verification

Data Validation High

12 QR code receipt generation will fail for
large non-anonymous ballots

Data Validation Medium

13 Session token validation ignores idle
timeout

Session
Management

Medium

© 2020 Trail of Bits Voatz Security Assessment | 35

14 Receipt encryption is weak and can leak
confidential information

Cryptography Medium

15 Insufficient device ID validation on
backend

Data Validation Medium

16 Resource exhaustion via logging/storage
of unsanitized data

Denial of
Service

Medium

17 Potential resource exhaustion via
specially crafted Zimperium threats

Denial of
Service

Medium

18 Zimperium checks on the backend are a
blacklist, not a whitelist

Access Controls Medium

19 AES-GCM key/nonce/tag encryption
system breaks authenticity

Access Controls Medium

20 Unauthenticated ECDH is vulnerable to
key compromise impersonation

Cryptography Medium

21 AES-GCM keys, nonces, and “tag”s are
encrypted using AES-ECB

Cryptography Medium

22 Voatz API server lacks OCSP stapling Cryptography Medium

23 Empty ballots are not recorded in
Hyperledger

Data Validation Low

24 Database root credentials stored in git Data Exposure Undetermined

25 Signed voter affidavits are sent to an
administrative email

Data Exposure Undetermined

26 AES-GCM AAD usage is non-standard Cryptography Undetermined

27 Session cookie expiration offset is a
hardcoded literal

Configuration Informational

28 Encrypted application data is trivially
brute-forceable

Cryptography High

© 2020 Trail of Bits Voatz Security Assessment | 36

29 PBDKF2 provides insufficient security
margin for PIN codes

Cryptography High

30 Third-party apps can capture the Android
client screen and read screenshots taken
from the client

Data Exposure High

31 Android release build signing key
password and keystore password stored
in git

Data Exposure High

32 A malicious website can read from the
Android client’s internal storage

Data Exposure High

33 Insufficient Android device ID
construction

Session
Management

Low

34 Android client does not use the SafetyNet
Attestation API

Configuration Low

35 Android client does not use the SafetyNet
Verify Apps API

Configuration Low

36 Certificate pinning is only configured for
the main Voatz domain

Cryptography Low

37 No explicit verification of the Android
Security Provider

Patching Low

38 Jumio Netverify API credentials stored in
git

Data Exposure Undetermined

39 Google Services API key stored in git Data Exposure Undetermined

40 A malicious website may be able to
execute JavaScript within the Android
client

Access Controls Informational

41 The iOS client does not disable custom
keyboards

Data Exposure Medium

42 The iOS client does not use
system-managed login input fields

Configuration Low

© 2020 Trail of Bits Voatz Security Assessment | 37

43 iOS client keychain items are not excluded
from iCloud and iTunes backups

Data Exposure Low

44 Cryptographic credentials are not
generated in the iOS Secure Enclave

Cryptography Low

45 iOS client disables Apple Transport
Security (ATS)

Cryptography Low

46 iOS client is vulnerable to object
substitution attacks

Data Validation Undetermined

47 An iOS user can lose their registration Session
Management

Informational

48 iOS client is susceptible to URI scheme
hijacking

Data Validation Informational

© 2020 Trail of Bits Voatz Security Assessment | 38

Backend Findings

1. Device IDs not validated against inner request device IDs
Severity: High Difficulty: Low
Type: Data Validation Finding ID: TOB-VOATZ-014
Target: <various API endpoint handlers>

Description
There is insufficient data validation when processing encrypted requests on the backend
server. This allows a user to send requests with another user’s device ID, bypassing
protections from the per-device shared secret encryption scheme.

The structure of an encrypted API request generally has two fields: deviceId and request .
The device ID is used to look up a per-device encryption key to secure communications
between the client and the server, and to decrypt the underlying request data.

case class ApiEncryptedThreatDetectedRequest (deviceId : String , request : String)

Figure TOB-VOATZ-014.1: The structure of an encrypted request used to report client-side threats
detected on the device (customer.scala#L194).

Often, the underlying request data will also have a deviceId field.

 c ase class ApiThreatDetectedRequest (deviceId : String , customerId : Option [Int], threatId :
String , threatName : Option [String], threatSummary : Option [String], threatType :
Option [String],
 threatSeverity : Option [String])

Figure TOB-VOATZ-014.2: The underlying request to report client-side threats detected on the
device (customer.scala#L192–L193).

In many cases, Voatz fails to validate that the device ID in the underlying request matches
the device ID used to encrypt the request. This means an attacker can use their own device
ID to encrypt requests which are actually targeting another user/device.

The consequences of this issue vary per operation. In the example above, a user could
create an ApiThreatDetectedRequest to blacklist another device ID from authentication by
using their own device ID to encrypt the outer ApiEncryptedThreatDetectedRequest .

In other cases, such as an ApiEncryptedCustomerAuthenticateRequest , the Voatz
backend will validate the session cookie against the outer device ID used for encryption,
but use the device ID in the inner request to perform an action. In this case, a user can
authenticate to their account while forcing the Voatz backend to pass an invalid device ID
to the makeTransactionRequest function call. The same consequence can be observed
during handling of the ApiEncryptedCustomerLogoutRequest .

© 2020 Trail of Bits Voatz Security Assessment | 39

Appendix C contains a complete list of the encrypted API requests that are affected by
similar data validation issues.

Exploit Scenario
Bob is using Voatz to vote in a local election. Alice, an attacker on his network who also
uses Voatz to vote locally, wants to blacklist him from voting. Alice sends an
ApiEncryptedThreatDetectedRequest to the Voatz backend, providing Bob’s device ID in
the inner request, but encrypting the request with her own device ID. The Voatz backend
will accept this request and blacklist Bob’s device from future authentication.

Recommendation
Short term, refactor the handling of encrypted requests to ensure the device ID used to
index the shared secret for encryption is validated against the device ID in the underlying
request. Alternatively, consider removing device ID from the inner request to preserve
bandwidth and alleviate any device ID conflicts.

Long term, review data validation surrounding requests on the Voatz backend to ensure a
user cannot submit requests for any accounts/devices but their own, and that malformed
data cannot be provided to the server to invoke resource exhaustion.

© 2020 Trail of Bits Voatz Security Assessment | 40

2. Amazon admin password is hardcoded in source file
Severity: High Difficulty: Low
Type: Data Exposure Finding ID: TOB-VOATZ-017
Target: AmazonTestOtpUtility.scala

Description
Amazon credentials for an account with the username “admin” can be found in the Scala
source tree. This allows anyone with source access to control the entire deployment
environment of the Voatz application. The password also has insufficient entropy.

Exploit Scenario
An attacker gains source access to the Voatz codebase, discovers these credentials, and
stealthily installs rootkits on all deployed Voatz servers. They can then observe any
individual's voting patterns and tamper with the actual votes cast.

Recommendation
Short term, conduct a thorough investigation into whether this key could be misused.
Remove it from the source file and rotate it. Replace it with a stronger password generated
by a password manager.

Long term, implement the kind of secret management process described in
TOB-VOATZ-012 , and audit all new code for secrets.

© 2020 Trail of Bits Voatz Security Assessment | 41

3. Non-Anonymous ballot receipts are encrypted with AES-CBC using
hardcoded key and IV
Severity: High Difficulty: Low
Type: Cryptography Finding ID: TOB-VOATZ-006
Target: CustomerVoteInfoAsync.scala

Description
In order to give voters a receipt of their voting choices, Voatz takes their voting data,
encrypts it with AES in CBC mode, creates a QR code of this data, and uploads it to Amazon
S3. Voatz then shares a link to this QR code with the voter, who decrypts the information
contained. Notably, the URLs are highly predictable, and could allow for trivial
enumeration.

This encryption uses a hard-coded static key and IV found in the core server code as well as
the Android and iOS application code. This means that anyone capable of downloading a
Voatz mobile application can decrypt these receipts and see the highly confidential voting
data contained. It appears the particular key and IV used are also copied from a Stack
Overflow answer .

Note that QR code receipts are currently only generated if the event name is “ElectionNA”
or “ElectionNAMulti” (i.e. , a non-anonymous election). Voatz claims that non-anonymous
ballot elections have not been used since 2018 and all code to support them will be
removed from the system.

Exploit Scenario
During an election, an attacker extracts the static key and IV from a Voatz Android
application, then crawls the S3 bucket used for voting receipts. They then have access to all
voting data from that election. Moreover, voters’ signatures are uploaded to the same S3
bucket, allowing time-based correlation between voters’ names and their ballots.

Recommendation
Immediately conduct a thorough investigation of whether past voting data is accessible via
this vector, and take down any data found. Send receipts only over ephemeral channels
with a unique channel key determined dynamically.

Long term, ensure no encryption uses hardcoded credentials. AES-CBC should be
deprecated in favor of AES-GCM or another AEAD construction.

© 2020 Trail of Bits Voatz Security Assessment | 42

https://stackoverflow.com/questions/27072021/aes-encrypt-and-decrypt
https://stackoverflow.com/questions/27072021/aes-encrypt-and-decrypt

4. Secrets are stored in environment variables sourced from bash script
Severity: High Difficulty: Medium
Type: Data Exposure Finding ID: TOB-VOATZ-013
Target: startup.sh

Description
Many of Voatz core services’ secrets (but not all) are loaded as environment variables at
startup. Specifically, an (optionally) AES-CBC encrypted file containing bash source to assign
a number of variables is (optionally) decrypted and then sourced in the startup script. The
variables in the first file are used to assemble a second bash script, which is then also
executed. The second bash script should then be deleted.

This loading process has several issues. First, any modification of the persistent file trivially
leads to code injection. AES-CBC has no anti-malleability guarantees, and cannot prevent
this issue. Secondly, should the application shut down unexpectedly, it is possible that
secrets will remain in another plaintext file. The standard shutdown process (as
documented in the provided shutdown script) apparently seems to be running kill -9 , so
this is certainly a possibility.

Additionally, even if the persistent file is always well-behaved, keeping secrets in
environment variables is a well-known antipattern. Environment variables are commonly
captured by all manner of debugging and logging information, can be accessed from
procfs , and are passed down to all child processes. Environment variables are in no way an
acceptable substitute for a real secret-management system such as Vault or Keywhiz .

Exploit Scenarios

● An attacker with local disk access modifies the encrypted secrets file to gain
arbitrary code execution on the Voatz server.

● A logging service transports environment variables over HTTP, allowing anyone with
local access to read Voatz secrets.

● An improper shutdown or server misconfiguration leaves secrets unencrypted on
the Voatz server, allowing any attacker who can read files to access all keys.

Recommendation
Short term, switch to a purpose-built secret-management system such as Vault or Keywhiz .
Rotate all credentials stored with the previous system.

Long term, ensure that no secrets are stored in either code or environment variables, and
use the secret manager instead.

© 2020 Trail of Bits Voatz Security Assessment | 43

https://unix.stackexchange.com/questions/29128/how-to-read-environment-variables-of-a-process
https://www.vaultproject.io/
https://square.github.io/keywhiz/
https://www.vaultproject.io/
https://square.github.io/keywhiz/

5. API for the onboarding work�low prohibits partitioning cloud resources
for concurrent elections
Severity: High Difficulty: High
Type: Configuration Finding ID: TOB-VOATZ-010
Target: Cryptography.scala

Description
The first API call a mobile client makes after the cryptographic handshake registers it with
an email address, phone number, and device ID using the customer’s/pre-registered REST
endpoint. This call does not include any information about the election for which the
customer is pre-registering, and therefore must be routed to a single, centralized core
server. Backend infrastructure (S3, Mongo, Hyperledger, etc.) could be duplicated for each
election, but there do not appear to be provisions for that in the backend code. Therefore,
a unique Voatz client must be built and distributed for each election, preconfigured with
the backend instance specific to that election. This is why voters are first taken to a landing
page for each election, where they are directed to download an election-specific client
through Apple TestFlight or Google Play Beta.

Voatz has indicated that it plans to support multiple elections from a single app distributed
through the public iOS and Android app stores. However, this will necessitate changes to
the underlying protocol.

Exploit Scenario
An attacker compromises an election’s landing page, changing the download link to install a
modified version of the client created by the attacker.

Recommendation
Short term, ensure that all backend infrastructure is re-provisioned between elections and
not shared between elections/clients. Use infrastructure-as-code tools like Ansible and
Terraform to automate and manage provisioning.

Long term, revise the onboarding workflow to provide an election identifier from the very
first step so a completely independent backend cloud infrastructure can be provisioned for
each election.

© 2020 Trail of Bits Voatz Security Assessment | 44

6. Receipt and a�fidavit filename collisions
Severity: High Difficulty: High
Type: Data Validation Finding ID: TOB-VOATZ-020
Target: ReceiptHelper.scala

Description
The Core Server deterministically chooses a filename for receipts and affidavits before they
are uploaded to S3. These filenames are identified based upon the voter’s anonymous IDs
(audit tokens). In constructing the filename, they are sanitized by removing special
characters:

 val deviceIdEsc = Pattern .compile(

 "[\\{\\}\\(\\)\\[\\]\\.\\+*\\?\\^\\$\\\\\\|\\=\\/\\@\\;]")

 .matcher(deviceId).replaceAll("")

Figure TOB-VOATZ-020.1: Escaping special characters in the receipt and affidavit filename
generation (ReceiptHelper.scala#L16).

If two anonymous IDs are the same except for the existence of special characters, the
receipt filenames uploaded to S3 will conflict.

Exploit Scenario
Alice modifies her mobile app or writes her own custom client (see Appendix B, Claim 3).
The bespoke client registers for an election using the same audit token as Bob, plus a
reserved character (e.g. , by exploiting a vulnerability like TOB-VOATZ-046). Alice’s affidavit
and receipt will overwrite Bob’s.

Note that the S3 bucket policy can affect the result of this exploit. For example, the bucket
might have versioning enabled, in which case Bob’s files will not be permanently
overwritten. We were not given access to any of the production S3 bucket policies, so we
cannot assess this.

Recommendation
Short term, move all device ID sanitization and escaping as early as possible in the
onboarding process, when a device ID is first set. Perform a check to ensure that the
sanitized ID does not collide with a preexisting ID associated with any other voter.

Long term, transition to unique identifiers that are assigned by the backend, not by the
clients.

© 2020 Trail of Bits Voatz Security Assessment | 45

7. A voter can unregister another voter’s device
Severity: High Difficulty: High
Type: Access Controls Finding ID: TOB-VOATZ-022
Target: CustomerMongoDaoAsync.scala

Description
The re-registration workflow is designed to address the situation in which a voter’s device
ID changes (e.g. , due to a lost device). Unlike most other post-onboarding API endpoints
that use the voter’s device ID as a unique identifier, re-registration instead relies on the
voter’s mobile phone number, since a change in the device ID likely prompted the
re-registration in the first place. The last step in the re-registration process calls the
reRegisterAsFuture function, which receives the mobile phone number from the client as
an HTTP parameter. Another optional HTTP parameter provided by the client,
useSideChannel , can be used to disable the email account recovery validation.

val useSideChannel = request.useSideChannel.getOrElse(false)
val (sideChannelOk, sideChannelErr, sideChannelEmail) = if (useSideChannel){
 ⋮ // Elided E-mail verification code that can be avoided
} else {
 (true , "" , None)
}

if (maxReqExceededByMob){
 ⋮ // Elided error handling code
} else if (maxReqExceededByDevice){
 ⋮ // Elided error handling code
} else if (maxReqExceededByIp){
 ⋮ // Elided error handling code
} else if (! sideChannelOk){
 ⋮ // Elided error handling code
} else {
 val preRegResult = await(CustomerPreRegisterAsync .preRegister(request.mobileNumber,
request.emailAddress.getOrElse(""), request.deviceId, ipAddress,
OffsetDateTime .now().toString()))
 CustomerPreRegisterReadAsync .create(preRegResult)
 (preRegResult, None , sideChannelEmail, None)
}

Figure TOB-VOATZ-022.1: Reliance on the re-registration request parameters to use email
validation and to specify the mobile number (CustomerMongoDaoAsync.scala#L1224–L1277).

© 2020 Trail of Bits Voatz Security Assessment | 46

Exploit Scenario
Alice and Bob both register with Voatz on their respective devices. Alice, using a custom or
modified client, sends a re-registration API request using her own information, but with
Bob's mobile number and the useSideChannel flag set to false . Bob's registration will be
reset and he will no longer be able to log in from his device.

Recommendation
Short term, ensure that a second factor of authentication is always necessary for
re-registration.

Long term, refactor the re-registration workflow so it does not rely on any information
provided by the client. Improve unit test coverage to test all edge cases relating to data
provided in the API request. In general, it should never be assumed that a client is not
maliciously modified.

© 2020 Trail of Bits Voatz Security Assessment | 47

8. Input keying material for AES GCM encoding is sent to Graylog
Severity: High Difficulty: High
Type: Data Exposure Finding ID: TOB-VOATZ-023
Target: Aes128GcmEncoding.scala

Description
On line 103 of Aes128GcmEncoding.scala , the input keying material for AES is sent to
Graylog at the trace level. We were not given the configuration files necessary to
determine whether logging would be configured to expose this keying material on a
production instance. The cryptographic key is used for securing requests to and from the
receipt service.

Exploit Scenario
An attacker gains read access to Graylog and is able to compromise all AES GCM encrypted
requests to and responses from the receipt service. This can enable a passive attacker with
network access to de-anonymize ballot receipts.

Recommendation
Short term, remove the log message. Ensure that production instances are configured to
run at the highest log level for which the necessary auditing information is still recorded.

Long term, perform a comprehensive audit of the log messages used within the system to
ensure they do not contain any sensitive information.

© 2020 Trail of Bits Voatz Security Assessment | 48

9. Voatz backend SSL key has a subdomain wildcard
Severity: High Difficulty: High
Type: Configuration Finding ID: TOB-VOATZ-028
Target: Voatz backend servers hosted in the nimsim.com domain

Description
The Voatz backend servers are hosted on the nimsim.com domain. All servers hosted at this
domain appear to use the same SSL certificate with a wildcard matching any subdomain:
*.nimsim.com . This implies that each server has a duplicate copy of the domain’s SSL
private key. Therefore, the private key to the entire Voatz backend domain—to which the
clients are pinned (see TOB-VOATZ-026)—is only as secure as the weakest server on the
domain. Voatz server provisioning and management are currently performed manually, so
it is likely that some infrastructure will be left unpatched over time.

Exploit Scenario
A Voatz development server is not decommissioned, and/or is left unpatched. Alice exploits
the server and gains access to the private key for *.nimsim.com , allowing her to passively
snoop on and decrypt encrypted network traffic, man-in-the-middle connections, and
potentially instantiate her own backend server masquerading as a legitimate Voatz server.

Recommendation
Short term, use different SSL credentials for each nimsim.com subdomain. Ensure that
out-of-date servers are either patched or decommissioned.

Long term, transition to automated infrastructure provisioning and management, e.g. , with
infrastructure-as-code tools like Ansible and Terraform. Let’s Encrypt, via an
ACME-compliant certificate provisioning tool like certbot, can automate the acquisition and
distribution of TLS certificates on Voatz infrastructure.

References

● Certbot instructions for CentOS 6 and Apache HTTPD

© 2020 Trail of Bits Voatz Security Assessment | 49

https://certbot.eff.org/lets-encrypt/centos6-apache

10. Clients can specify their own audit token
Severity: High Difficulty: High
Type: Data Validation Finding ID: TOB-VOATZ-046
Target: CustomerApiWorkerAsync.scala

Description
Audit tokens are generated in the Voatz core server and sent to the client. The API request
for submitting a vote accepts the voter’s audit token from the client without validation.
There is a check to ensure that the submitted audit token is valid; however, there is no
check to ensure that the audit token is associated with the voter. Therefore, an attacker
with access to another voter’s audit token can cast their vote with the same token, causing
confusion during auditing and calling the integrity of the entire election into question.

Appendix C provides more instances of API endpoints that lack sufficient validation and
may result in similar exploits.

We did not have access to the audit portal source code, so it is unclear how it might react to
an audit token collision. Possibly it would cause the same Hyperledger data to be
associated with each ballot receipt, or it might cause one of the votes to disappear. This
vulnerability may also result in a denial of service on the audit portal, since a malicious
client could submit an arbitrarily large audit token.

Exploit Scenario
Alice knows Bob’s audit token (e.g. , by observing his ballot receipt or colluding with him).
She uses a modified client to submit her vote with the same audit token as Bob. During an
audit, Eve notices that Alice and Bob’s votes both use the same token, calling the integrity
of the election into question.

Recommendation
Short term, validate that the audit tokens provided in client requests are associated with
the voter’s client ID.

Long term, do not require clients to submit data like audit tokens in requests. Instead,
perform a database lookup of their data.

© 2020 Trail of Bits Voatz Security Assessment | 50

11. Test parameters in the registration APIs can bypass SMS verification
Severity: High Difficulty: High
Type: Data Validation Finding ID: TOB-VOATZ-047
Target: CustomerApiWorkerAsync.scala

Description
Both the preRegisterCustomer and reRegisterCustomer API endpoints accept an optional
“test” HTTP parameter. When included in a registration request, it bypasses the normal
SMS verification code that uses Twilio and instead uses Amazon OTP. The code suggests
that this is an experimental feature of Voatz.

In the version of the codebase assessed during this engagement, the credentials for
interacting with the Amazon OTP server are hard-coded into
AmazonTestOtpUtility.scala . However, on February 21 in git commit 5f5938a, the
hard-coded credentials were removed (although not rebased from the git history) and
instead read from MongoDB using getAmazonTestOtpSettings . The logic inside of
reRegisterCustomer was also changed such that if the client sets the test parameter to
true and the MongoDB instance does not include any Amazon OTP settings (as is likely to
be the case in production), then no SMS verification will be sent.

Appendix C provides more instances of API endpoints that lack sufficient validation and
may result in similar exploits.

Exploit Scenario
Alice knows Bob’s mobile number, which she uses to initiate the re-registration process
(see TOB-VOATZ-007). Using a modified client, she sets the test parameter to true ,
preventing the SMS verification message from being sent to Bob. If Alice has access to
Bob’s email and also knows Bob’s previous OTP verification code, she can gain control of
his account.

Recommendation
Short term, remove the test code from production. Rebase the git repository to remove API
secrets from the history.

Long term, revise the API to remove any reliance on inputs provided by clients.

© 2020 Trail of Bits Voatz Security Assessment | 51

12. QR code receipt generation will fail for large non-anonymous ballots
Severity: Medium Difficulty: Low
Type: Data Validation Finding ID: TOB-VOATZ-009
Target: CustomerVoteInfoAsync.scala

Description
Voting information is encrypted (see TOB-VOATZ-006) and encoded in a QR code before
being emailed to the voter and uploaded to an Amazon S3 bucket. The message encoded in
the QR code is:

"For your records, here is how you voted on MMMM dd, yyyy during the
$eventName event:|$voteData"

This is encrypted with AES256-CBC using PKCS7 padding and an IV, resulting in a ciphertext
length of:

 bytes. 6 2(16

len(plaintext) +) · 1

Another two bytes (“ +9 ”) are finally prepended to the ciphertext before it is rendered as a
QR code. The QR Code is generated using the Zebra Crossing (ZXing) library, which defaults
to ECC level “L.” At this level, a maximum-sized QR Code (177 by 177) can store at most
2,953 bytes. Therefore, the following invariant must hold:

6 2 953. 2(16
76 + len($eventName) + len($voteData) +) · 1 + ≤ 2

A QR code will not be generated if the length of the event name plus the length of the vote
data is greater than 2,843 bytes.

Note that QR code receipts are only generated if the event name is “ElectionNA” or
“ElectionNAMulti” (i.e. , non-anonymous ballot elections). Voatz claims that non-anonymous
ballot elections have not been used since 2018 and all code to support them will be
removed from the system.

Exploit Scenario
Alice submits a vote for an election with a very large ballot (e.g. , a simultaneous federal,
state, and municipal election). She enters write-ins for each candidate, resulting in over
~2KiB of ballot data. The QR Code generation for her ballot will fail, she will not receive a
QR code email receipt, and the QR Code will not be uploaded to S3.

Recommendation
Short term, log any such QR code generation failure events, and alert the voter.

Long term, provide a more robust means for delivering receipts to voters (e.g. , by returning
multiple QR Codes, if necessary).

© 2020 Trail of Bits Voatz Security Assessment | 52

https://github.com/zxing/zxing

13. Session token validation ignores idle timeout
Severity: Medium Difficulty: Low
Type: Session Management Finding ID: TOB-VOATZ-018
Target: SessionAuthenticatorAsync.scala

Description
The code to reject authentication when a session token has exceeded its idle timeout is
commented out. In fact, the MaxIdleTime variable is unused in the code, despite appearing
in the configuration.

This finding is partially remediated in practice, since session information is kept in
Memcached, which will delete the session on logout. (This happens on idle timeout and
when the app transitions from the foreground to the background.) However, this requires
the client to initiate an API call to logout ; if the client crashes or the device loses Internet
connectivity, the session will stay active since there is no equivalent timeout on the
backend.

if (csrfToken != csrfTokenOpt.get) {
 Left (AuthenticationFailedRejection (CredentialsRejected , List ()))
}
/*
else if(idleTime > config.HttpConfig.Authentication.MaxIdleTime){
 Left(AuthenticationFailedRejection(CredentialsRejected, List()))
}
*/
else {
 Right (HttpApiSession (sessionCookie, csrfToken, customerId, lastUse))
}

Figure TOB-VOATZ-018.1: Commented-out token timeout check
(SessionAuthenticatorAsync.scala#L115–L125).

Exploit Scenario
Alice gains access to Bob’s session token and credentials (e.g., with physical access to Bob’s
phone, and by terminating its network connection before it can call logout). She can then
wait an arbitrary amount of time for an election to start and she will still be able to vote on
his behalf.

Recommendation
Short term, re-enable the timeout check.

Long term, improve unit test coverage to address these scenarios.

© 2020 Trail of Bits Voatz Security Assessment | 53

14. Receipt encryption is weak and can leak confidential information
Severity: Medium Difficulty: Low
Type: Cryptography Finding ID: TOB-VOATZ-015
Target: ReceiptBuilder.scala

Description
Receipt PDFs are encrypted using standard PDF encryption in AES 128 mode, which is
effectively AES-128 in CBC mode with some limited usage of AES-128 in ECB mode. This
encryption is quite poorly designed; almost all PDF readers allow an attacker with the
ability to modify PDF receipts to leak plaintext information. Additionally, the length of the
encrypted PDF can be used as a side-channel to leak information about the plaintext
without requiring modification.

Müller, et al. ’s 2019 work Practical Decryption exFiltration: Breaking PDF Encryption details
methods for recovering the entire plaintext of encrypted PDFs in most PDF reader
software. They also detail exfiltration methods for extracting the plaintext once it has been
recovered. While many PDF readers found to be vulnerable have been patched, there are
still many unpatched systems, and many PDF readers have never been assessed for this
vulnerability.

Exploit Scenario
An attacker gains access to modify an encrypted PDF receipt or receipts. They quickly
decrypt all sensitive information contained without needing to know the password.

Recommendation
Short term, do not use PDF encryption. Replace the use of PDF encryption with the age
tool.

Long term, carefully audit all symmetric encryption used in the Voatz system for known
vulnerabilities.

References

● Practical Decryption exFiltration: Breaking PDF Encryption

© 2020 Trail of Bits Voatz Security Assessment | 54

https://pdf-insecurity.org/download/paper-pdf_encryption-ccs2019.pdf
https://github.com/FiloSottile/age
https://pdf-insecurity.org/download/paper-pdf_encryption-ccs2019.pdf

15. Insu�ficient device ID validation on backend
Severity: Medium Difficulty: Medium
Type: Data Validation Finding ID: TOB-VOATZ-019
Target: CustomerValidationsAsync.scala, OrganizationMongoDaoAsync.scala

Description
Device IDs are constructed on the client side in one of two ways, depending on whether the
platform is iOS or Android. There is insufficient validation of the device ID format on the
backend which allows clients to bypass Android licensing and device model checks, report
as using neither an iOS or Android device, and unnecessarily forwards the burden of data
validation onto external services such as the administrative web interface and audit portal,
which may reflect this field.

There are three instances of device ID checks on the backend. The first instance has been
commented out:

 } /*else if((deviceIdFromReq.startsWith("and-") || !deviceIdFromReq.startsWith("ios-"))
&& !androidWhitelistOpt.isDefined){
 (false, s"Sorry, your device currently does not have access to the Voatz platform.
Thanks for your interest, we will be in touch as soon as your device can be granted
access.", None)}*/

Figure TOB-VOATZ-019.1: Commented-out device ID validation
(CustomerValidationsAsync.scala#L111–L112).

During AndroidLvl checks, the device ID is checked to see if the device is an Android device.
If the device ID does not start with “ and- ” (case-insensitive), these checks will be skipped.
This check is insufficient because it does not ensure the format of the device ID past this
prepended prefix, nor is it case-sensitive, allowing device IDs such as “ aNd- ” or
“ AnD-FakeDeviceId ,” neither of which should ever be constructed by the client:

 private def isAndroidLvlCheckOk (deviceIdFromReq : String , androidLvlNonceOpt :
Option [Int])(implicit db : MongoDatabase) = async{
 if (deviceIdFromReq.matches("(?i)^and-.*")) {

Figure TOB-VOATZ-019.2: Insufficient device ID validation during AndroidLvl checks
(CustomerValidationsAsync.scala#L157–L158).

In the final instance of device ID format validation when checking a device model, the
device ID is checked for the prefix “ and- ” (case-sensitive). If this prefix is not found, the
device model checks will be skipped. This means an attacker can prevent additional checks
with a specially crafted device ID:

 def checkDeviceModel (organizationSnap : OrganizationSnapshot , deviceProfileOpt :
Option [DeviceProfile])(implicit db : MongoDatabase) : Future [(Boolean , String)] = async{
 if (organizationSnap.deviceModelCheck.getOrElse(false)){
 if (deviceProfileOpt.isDefined){
 if (deviceProfileOpt.get.deviceId.isDefined){

© 2020 Trail of Bits Voatz Security Assessment | 55

 if (deviceProfileOpt.get.deviceId.get.startsWith("and-")){

Figure TOB-VOATZ-019.3: Insufficient device ID validation during organization device model
checks (OrganizationMongoDaoAsync.scala#L428–L432).

The device ID is a client-constructed identifier which should follow an explicit format. The
backend should validate the device ID is of good form, or block the user.

The use of a device ID has implications for the End-to-End Verifiability (E2E-V) of the Voatz
system since this parameter identifies voters. See Appendix D: Verifiability and Voatz for
further discussion.

Exploit Scenario
An attacker is writing a script that simulates a client, performs the initial handshake, and
can invoke subsequent encrypted requests. Realizing that the device ID is insufficiently
validated, the attacker no longer has to research how to construct a valid device ID, and
can easily construct one that bypasses additional device model checks.

Recommendation
Short term, validate the device ID to ensure it is of good form. Block any users who attempt
to register with an invalid device ID. These checks should account for case-sensitivity and
the format of the identifier after the “ and- ” and “ ios- ” prefixes.

Long term, review all API request fields to ensure sufficient data validation is performed. In
cases where malformed data is provided, consider the strength of the evidence as an
indicator that the user is malicious and should be blocked. Avoid reliance on client-supplied
values for security of the system.

© 2020 Trail of Bits Voatz Security Assessment | 56

16. Potential resource exhaustion via logging/storage of unsanitized data
Severity: Medium Difficulty: Medium
Type: Denial of Service Finding ID: TOB-VOATZ-031
Target: CustomerApiWorkerAsync.scala, CustomerMongoDaoAsync.scala

Description
Request handlers throughout the Voatz backend do not properly sanitize fields, which are
later passed through loggers or stored in a database.

val logErr = s "EncryptedUpdateCustomerWithIdv req failed: customerId in request
$re qCustomerId does not match customerId $de vCustomerId connected to deviceId $de viceId"
log.error(logErr)

Figure TOB-VOATZ-031.1: Logging of unsanitized, client-controlled variables
(CustomerApiWorkerAsync.scala#L2524-L2525).

Assuming the hosting provider uses a logging provider that writes to disk or otherwise
performs an expensive operation with the logged data, this could be used to exhaust
resources. Similarly, storing many of these variables to the database provides an attack
vector similar to TOB-VOATZ-030 .

Furthermore, an attacker can construct a field (such as deviceId , displayed above) so the
logged error seems to say the field’s content was part of the encapsulating message. This
could be used in a phishing attempt against a developer reviewing logs.

Exploit Scenario
Eve, an attacker, performs a handshake and establishes a connection with the Voatz
backend. Afterwards, she sends many requests which trigger an error that concatenates a
client-controlled field. As a result, she is able to force the Voatz backend to create very large
logs, which could lead to a potential resource exhaustion, depending on the logging
provider used.

Recommendation
Short term, ensure that appropriate data validation is performed on client-controlled fields
before operating on them.

Long term, review all requests to ensure proper data validation is performed. Fields should
be limited in length to prevent resource exhaustion attacks. Ensuring proper form will also
prevent any additional attacks from incorrect handling of malformed data.

© 2020 Trail of Bits Voatz Security Assessment | 57

17. Resource exhaustion via specially cra�ted Zimperium threats
Severity: Medium Difficulty: Medium
Type: Denial of Service Finding ID: TOB-VOATZ-030
Target: CustomerApiWorkerAsync.scala, CustomerMongoDaoAsync.scala

Description
The backend currently stores all previously unreported Zimperium-reported threats for a
given device ID and threatId . However, neither the device ID nor threatId are validated,
allowing users to spam the backend with specially crafted threat-detected requests which
will be stored in the database. This could lead to resource exhaustion.

 def createThreatDetection (request : ApiThreatDetectedRequest , ipAddress : String)(implicit
db : MongoDatabase) = async{
 val threatSnapOpt = await(ThreatDetectionAsync .getByDeviceIdAndThreatId(request.deviceId,
request.threatId))
 if (! threatSnapOpt.isDefined){
 await(ThreatDetectionAsync .create(request.deviceId, request.customerId,
request.threatId, request.threatName, request.threatSummary, request.threatType,
 request.threatSeverity, ipAddress))
 } else {
 threatSnapOpt
 }
 }

Figure TOB-VOATZ-030.1: Creation of a new detected threat in the database if the device ID and
threatId don’t already exist (CustomerMongoDaoAsync.scala#L2341-L2349).

Assuming the hosting provider sets an upper bound on the size of the database, an
attacker may spam these types of requests to ensure the maximum database size is
reached. Alternatively, queries for any reported threats against a device may become very
expensive, causing resource exhaustion during the authentication process.

It is also worth noting that fields in the request such as threatName or threatSummary
could be set to very large strings. This may cause resource exhaustion when fetching from
the database, rendering the data client-side or otherwise displaying such fields on any
audit/administrator portal, which may allow review of these threats in the future.

Exploit Scenario
Eve, an attacker, performs a handshake and establishes a connection with the Voatz
backend. Afterward, she sends many Zimperium threat-detected requests to the server
which are large in size, and use a unique threatId each time, knowing it will expand the
database and cause threat-related queries to slow down. As a result, the server now must
spend more time querying the database for threats, and if a threat pertains to a given
device, it must relay data which could be much larger than the request that triggered it.

Recommendation
Short term, ensure that only threats with known threatId s are stored in the database. A
list of concerning threatId s is already maintained by the Voatz backend to determine if a

© 2020 Trail of Bits Voatz Security Assessment | 58

reported threat should result in the user being blocked from authentication. The Voatz
backend should cross-reference this list before storing a reported threat.

Long term, review all requests to ensure proper data validation is performed. Fields should
not be allowed to exceed a given length to perform resource exhaustion attacks. Ensuring
proper form will also prevent any additional attacks from incorrect handling of malformed
data.

© 2020 Trail of Bits Voatz Security Assessment | 59

18. Zimperium checks on the backend are a blacklist, not a whitelist
Severity: Medium Difficulty: Medium
Type: Access Controls Finding ID: TOB-VOATZ-029
Target: CustomerMongoDaoAsync.scala

Description
The wasThreatDetectedOnDevice function in CustomerMongoDaoAsync.scala is used by
CustomerValidationsAsync.scala to test whether a client’s authentication request is
valid. It first checks whether the client’s IP address is whitelisted and, if not, whether its
device ID is present in a list of detected threats reported by Zimperium. This acts as a
blacklist of devices that failed the Zimperium anti-tamper checks. However, since it is not
implemented as a whitelist, a client that has been modified to remove Zimperium
(see Appendix B Finding B.3) will not be present in the list of threats and will therefore pass
the authentication validation.

Exploit Scenario
Alice modifies the Voatz client to bypass its anti-tamper checks. The client can then
immediately communicate with the Voatz Core Servers, since it will have never failed a
Zimperium check.

Recommendation
Short term, switch to a server-side check that whitelists clients, e.g. , by ensuring that the
client both was not tagged as a threat by Zimperium and attested to Zimperium in the first
place. This, like all anti-tamper protections, is not foolproof. However, it will at least require
an attacker to perform the additional step of spoofing a valid Zimperium attestation rather
than simply gaining access once Zimperium is bypassed.

Long term, ensure that the security of Voatz is not predicated on the authenticity of the
Voter’s client.

© 2020 Trail of Bits Voatz Security Assessment | 60

19. AES-GCM key/nonce/tag encryption system breaks authenticity
Severity: Medium Difficulty: High
Type: Cryptography Finding ID: TOB-VOATZ-024
Target: Cryptography.scala

Description
AES encryption in the Voatz system happens in two parts: first, an AES-GCM key, nonce, and
“tag” are encrypted using AES-ECB (q.v . TOB-VOATZ-011). Then, these parameters are used
to decrypt the actual data. However, this defeats the authenticity guarantees that AES-GCM
provides. Because AES-ECB is malleable, the key and nonce can be arbitrarily modified. This
allows for the creation of a new key and nonce such that the saved ciphertext decrypts to
an arbitrary plaintext. This attack is best detailed in Dodis et al .’s 2018 work Fast Message
Franking: From Invisible Salamanders to Encryptment .

Exploit Scenario
Alice learns Bob’s shared secret. She can then modify the AES-ECB encrypted key, nonce,
and tag such that Bob’s encrypted data decrypts to a message of her choosing (so long as it
is the same length as the original message). AES-GCM’s authenticity guarantees do nothing,
as the checks they perform are a function of the key used.

Recommendation
Short term, remove all use of AES-ECB from the Voatz system. Instead of multiple levels of
AES with encrypted keys and nonces, simply have one standard AEAD construction.

Long term, standardize all symmetric encryption in the Voatz system to a single AEAD
construction. Remove any use of symmetric primitives other than this construction.

References

● Fast Message Franking: From Invisible Salamanders to Encryptment

© 2020 Trail of Bits Voatz Security Assessment | 61

https://eprint.iacr.org/2019/016.pdf
https://eprint.iacr.org/2019/016.pdf
https://eprint.iacr.org/2019/016.pdf

20. Unauthenticated ECDH is vulnerable to key compromise impersonation
Severity: Medium Difficulty: High
Type: Cryptography Finding ID: TOB-VOATZ-004
Target: Cryptography.scala

Description
Unlike protocols such as TLS and Wiregard, Voatz’ use of ECDH does not authenticate
handshakes, and is therefore vulnerable to Key Compromise Impersonation (KCI) attacks.
An attacker with access to a voter’s private key can impersonate the Voatz server without
either party being able to detect the deception. To be explicit, this issue refers to the ECDH
implementation in Scala found in the Core Server codebase, not that performed in the TLS
handshake.

Exploit Scenario
Bob wishes to cast a vote using Voatz. Alice remotely compromises Bob’s phone (e.g. , via a
known vulnerability in Bob’s mobile operating system, or via phishing), gaining access to his
private key. Alice can then man-in-the middle communication between Bob and Voatz,
altering messages without either end detecting. Notably, logging public keys cannot help
expose such an attack because from Bob’s perspective, Alice and Voatz have identical
public keys.

For example, Alice can masquerade as the Voatz server, accept Bob's vote, discard the vote,
and Bob will be unaware of his disenfranchisement. Alice can then use the private key to
submit a different vote to the real Voatz server. This does not require any modification to
the Voatz mobile application.

Notably, there is something of an ad hoc password-authenticated key exchange
implementation making use of the user’s device ID, a large list of fake keys, and the ECDH
scheme described above. The security properties of this scheme are undetermined, and
the use of the device ID specifically leads to the issues described in TOB-VOATZ-014 . We
recommend removing this scheme with the upgrade to a more standardized AKE as
described below.

Recommendation
Short term, replace ECDH and the system’s ad hoc PAKE with Noise or a TLS 1.3 handshake.
These are authenticated, and prevent key compromise impersonation.

Long term, avoid designing any kind of transport encryption. Use standardized and
integrated frameworks such as Wireguard or TLS 1.3.

References

● Key Compromise Impersonation attacks (KCI)

© 2020 Trail of Bits Voatz Security Assessment | 62

https://noiseprotocol.org/
https://www.wireguard.com/
https://www.cryptologie.net/article/372/key-compromise-impersonation-attacks-kci/

21. AES-GCM keys, nonces, and “tag”s are encrypted using AES-ECB
Severity: Medium Difficulty: High
Type: Cryptography Finding ID: TOB-VOATZ-011
Target: Cryptography.scala

Description
In Cryptography.scala, the encryptKeyNonceTag function is used to encrypt secrets used
for AES-GCM encryption. It does this by invoking cipher.getInstance("AES") , which
returns a cipher using AES in the famously insecure ECB mode. This mode has no semantic
security or authentication properties.

Exploit Scenario
Alice has compromised the Voatz system in such a way that she has discovered some
key/nonce/tag triples. She can unambiguously associate those with their encrypted and
stored versions, since AES-ECB lacks semantic security. She can also undetectably modify
stored entries such that they decrypt to a triple of her choosing, since AES-ECB is trivially
malleable.

Recommendation
Short term, remove all use of AES-ECB from the codebase, replacing it with AES-GCM.

Long term, add a cryptographic analyzer such as Cryptosense to Voatz’ continuous
integration process to automatically detect use of insecure algorithms.

References

● Why shouldn’t I use ECB mode?

© 2020 Trail of Bits Voatz Security Assessment | 63

https://cryptosense.com/
https://crypto.stackexchange.com/questions/20941/why-shouldnt-i-use-ecb-encryption

22. Voatz API server lacks OCSP stapling
Severity: Medium Difficulty: High
Type: Cryptography Finding ID: TOB-VOATZ-033
Target: Voatz Core Server and Clients

Description
The Voatz Core Server does not return its SSL certificate’s revocation status via OCSP
Stapling . This feature provides clients with the ability to detect whether the server’s SSL
certificate has been revoked.

Apple recommends that OCSP Stapling should be implemented on all mobile endpoints.
This implies that OCSP Stapling will become a requirement for iOS Apps on the App Store.

Exploit Scenario
Alice gains access to a Voatz server using its shared wildcard SSL certificate
(see TOB-VOATZ-028), compromising the certificate’s private key. Even if Voatz revokes the
compromised certificate, clients will continue to allow connections to any server with the
certificate—even ones hosted by Alice—because there is no OCSP Stapling.

Recommendation
Short term, update all Voatz servers and mobile clients to enable support for OCSP
Stapling.

Long term, perform certificate revocation exercises to ensure that the protections are
sufficient, as well as to train Voatz staff on how to react to a compromised SSL credential.

References

● Apple WWDC 2017: Your Apps and Evolving Network Security Standards
● Apache SSL/TLS Strong Encryption: OCSP Stapling

© 2020 Trail of Bits Voatz Security Assessment | 64

https://developer.apple.com/videos/play/wwdc2017/701/
http://httpd.apache.org/docs/2.4/ssl/ssl_howto.html#ocspstapling

23. Empty ballots are not recorded in Hyperledger
Severity: Low Difficulty: Low
Type: Data Validation Finding ID: TOB-VOATZ-027
Target: Voatz Core Server and Audit Portal

Description
Each “oval” (ballot selection) is stored in a block in the Hyperledger blockchain. If a ballot is
recorded in which the voter did not select any candidates, nothing will be saved to
Hyperledger. The voter’s ballot will still be recorded in MongoDB and MySQL, a paper ballot
generated, and a correct receipt PDF E-mailed. However, there will be no record of the vote
in Hyperledger.

Exploit Scenario
At least one voter submits a ballot with no ovals filled. During the auditing phase, an
auditor cannot validate that the ballot was legitimate since there are no corresponding
blocks in Hyperledger.

Recommendation
Short term, improve documentation and training materials for auditors to inform them of
this edge case.

Long term, store all ballot oval states in Hyperledger.

© 2020 Trail of Bits Voatz Security Assessment | 65

24. Database root credentials stored in git
Severity: Undetermined Difficulty: Low
Type: Data Exposure Finding ID: TOB-VOATZ-016
Target: deploy/secrets.txt

Description
The MongoDB and MySQL passwords were both added to git in commit
2809e13385bbaeba6c0a45cfabbc4f272f775526#diff-e1870fde547e5595490d9d9000dbe1b
b . Both databases appear to have the same, relatively weak, password. Additionally, both
databases appear to run as the root user. This password can also be found in build.sbt .

Exploit Scenario
An attacker compromises a Voatz employee with access to git but without authorized
access to the Voatz database servers. The attacker searches git and finds credentials to
access these resources, then gains root on the MongoDB and MySQL database servers.

Recommendation
Short term, use unique passwords per application. Do not store secrets in source code. Do
not run databases as root.

Long term, ensure all credentials are controlled by a dedicated secret management
application as described in TOB-VOATZ-013 .

© 2020 Trail of Bits Voatz Security Assessment | 66

25. Signed voter a�fidavits are sent to an administrative email
Severity: Undetermined Difficulty: Medium
Type: Data Exposure Finding ID: TOB-VOATZ-021
Target: ReceiptRouter.scala

Description
Once an affidavit is signed and processed by the voter, a copy is E-mailed to them and
BCC’d to an “admin notice inbox” E-mail address specified in the client config, defaulting to
[redacted]@voatz.org.

 val bccAddress : EmailAddress = EmailAddress (
 request.event.eventData.voteReceiptConfiguration.get
 .adminNoticeInboxes.tail.headOption.getOrElse("[redacted]@voatz.org")
)

Figure TOB-VOATZ-021.1: Signed affidavits are BCC’d to an administrator E-mail address
(ReceiptRouter.scala#L252–255).

The purpose of this delivery method and destination is unclear, hence the undetermined
severity of this finding. However, if the affidavits are used for auditing the election (e.g. , to
ensure that all voters properly signed the affidavit), then this will lead to a high severity
exploit, as follows.

Exploit Scenario
Alice writes a script to deny service to the [redacted]@voatz.org email address by filling its
inbox with spam. Once the inbox is full, legitimate affidavit emails will bounce. An audit of
the election will make it appear as if ballots were cast where the voter did not sign the
affidavit.

Recommendation
Short term, ensure that the “admin notice inbox” is large enough to thwart any attempted
spam overrun.

Long term, transition to a different method for archiving signed affidavits that is not prone
to denial of service.

© 2020 Trail of Bits Voatz Security Assessment | 67

26. AES-GCM AAD usage is nonstandard
Severity: Undetermined Difficulty: High
Type: Cryptography Finding ID: TOB-VOATZ-012
Target: Cryptography.scala

Description
The usage of AES-GCM throughout the Voatz codebase is not standard. In addition to the
typical key and IV inputs to the cipher, there is pervasive use of a third input, called “tag”.
This “tag” is added to the Authenticated Additional Data (AAD), but not used for any other
purpose. In some usage there is no “tag” provided, and instead a null buffer is used.

This does not appear to add any security benefit, but it does allow unambiguous
association of key/nonce/tag triples with ciphertexts.

The severity of this finding is Undetermined because the security implications of the
nonstandard tag are not fully understood.

Exploit Scenario
Alice compromises a key. Since the AAD is not encrypted, Alice can use the nonstandard tag
to match the key to ciphertexts for which it was used without needing to perform any
brute-force decryption operations.

Recommendation
Short term, remove the “tag” parameter from Voatz code. Additionally, remove code
updating the AAD with a null buffer.

Long term, carefully audit all cryptographic primitives for use conforming to their
specification.

© 2020 Trail of Bits Voatz Security Assessment | 68

27. Session cookie expiration o�fset is a hardcoded literal
Severity: Informational Difficulty: Low
Type: Configuration Finding ID: TOB-VOATZ-005
Target: CustomerRoutesAsync.scala, OrganizationRoutesAsync.scala

Description
During customer and organization authentication methods, the Voatz backend sets the
user’s session cookie expiry date as an offset from the current timestamp. These offsets
are supplied as a hardcoded integer literal.

 setCookie(HttpCookie (SessionCookie , session.sessionCookie, httpOnly = true ,
secure = config. HttpConfig . UseHttps ,
 expires = Some (DateTime .now. + (3600000l)), domain = domainVal, path =
Some ("/"))) {
 complete(AuthenticateResultWithNextKey (nextKey, customerSnapshot,
votedEventIdLastUseTsPairs))
 }

Figure TOB-VOATZ-005.1: Cookie expiration setting during in authenticateCustomer
(CustomerRoutesAsync.scala#L318–L321).

 setCookie(HttpCookie (SessionCookie , payload.sessionCookie, httpOnly = true ,
secure = config. HttpConfig . UseHttps ,
 expires = Some (DateTime .now. + (43200000l)), domain = domainVal, path =
Some ("/"))) {
 complete(orgSnapshot)
 }

Figure TOB-VOATZ-005.2: Cookie expiration setting in extendedOrgKeyLogin
(OrganizationRoutesAsync.scala#L959–L962).

As seen above, there are two different hardcoded cookie expiration offsets are used,
3600000l and 43200000l . These are used in various places throughout these two files.

In the event these cookie expiration offsets are found to be insufficient, multiple instances
of hardcoded literals existing as such would increase the possibility of developer-error
during any refactoring.

Exploit Scenario
Bob is a developer of Voatz. Upon review, Bob realizes the cookie expiration dates set are
insufficient and wishes to refactor them. He attempts to refactor all instances of the
undesirable timestamp offset, but misses an instance. This results in a disjoint in session
cookie expiration times when performing different authentication operations.

Recommendation
Short term, refactor the session cookie expiration offsets so that they are derived from a
singular definition and can be uniformly refactored across the codebase.

© 2020 Trail of Bits Voatz Security Assessment | 69

Long term, review the use of hardcoded literals throughout the codebase. Ensure that
significant variables do not make use of repetitively hardcoded literals, but instead derive
from well-defined constants, configuration-based variables, or otherwise uniform
definitions.

© 2020 Trail of Bits Voatz Security Assessment | 70

Android Findings

28. Encrypted application data is trivially brute-forceable
Severity: High Difficulty: Low
Type: Cryptography Finding ID: TOB-VOATZ-048
Target: Voatz Android Client

Description
The Android client creates a local database that stores sensitive identifiers and the user’s
voting history. This database is encrypted with the user’s 8-digit PIN; however, it can be
trivially brute-forced. An attacker gaining access to this database file would see the user’s
past votes and have the means to impersonate the user in an election.

The Voatz Android client attempts to protect its local data through the following process:

1. Request the user create an 8-digit PIN code to protect their data
2. Use PBKDF2 with 1,000 iterations and an 8-character salt to convert the PIN to a key
3. Provide the key to the Realm.io encryptionKey parameter
4. Store the encrypted Realm database and the unencrypted salt on the filesystem

First, this process is sabotaged by the extremely low entropy of 8-digit numeric PIN codes,
for which there are only 99,999,999 possible options. By comparison, an 8-character
alphanumeric password has 218 trillion possible options.

The Android client uses PBKDF2 (“PBKDF2WithHmacSHA1”) to slow down attempts to brute
force the user’s 8-digit PIN; however, commonly available laptop computers can guess
~100,000 PBKDF2 keys per second. Therefore, it only requires, at most, 15 minutes to fully
exhaust the keyspace of the 8-digit PIN and successfully decrypt this file.

Second, this cryptographic system does not tie the encrypted database to the Android
device. It is possible to extract the database from the Android device and crack it on a
different, faster device, like a laptop computer or specialized password cracking system.

The Realm database stores a uniquely identifying audit token, the past history of votes, and
various notifications and configuration information for the Voatz app. In particular,
knowing the audit token allows an attacker to:

1. De-anonymize votes given access to the audit portal, Hyperledger, S3, or the voter’s
ballot receipt

2. Submit their own vote with the same audit token (via TOB-VOATZ-046), causing
discrepancies during an audit or even causing the first voter’s ballot to be discarded
(via TOB-VOATZ-020). The attacker must already be registered as a voter, and can
only exploit this vulnerability once, wasting their own vote in the process. This is

© 2020 Trail of Bits Voatz Security Assessment | 71

https://realm.io/docs/java/latest/api/io/realm/RealmConfiguration.Builder.html#encryptionKey-byte:A-

because the backend does not prevent double-voting via audit tokens; it uses the
customer ID, which is uniquely tied to the device ID that made the API request.

This vulnerability has a similar effect to the PIN-cracking finding of the MIT report (see B.5),
but requires less technical expertise and device access.

Exploit Scenario
Alice leaves her phone unattended at a bar, and Bob extracts the encrypted Voatz database
from it. On his home computer, Bob writes a script that tries PIN codes one at a time from
00000000 to 99999999, derives a key with PBKDF2 for each, then checks if decryption is
successful. Bob gains access to Alice’s Voatz data within 15 minutes and impersonates her
in an election.

Recommendation
Short term, encrypt the salt with the Android keystore. This will complicate attempts to
crack the database, but the gain is marginal and attacks will remain easy. Use the
getStorageEncryptionStatus() method to check whether a user’s Android device is
encrypted, and do not let them vote if it is not. This will reduce the likelihood that others
can extract data from a user’s phone. See also TOB-VOATZ-025 for a discussion of the KDF.

Long term, replace this cryptographic system with one based on the Android StrongBox.
The Android StrongBox Keymaster facilitates generating and using keys in a built-in
hardware security module where they cannot be easily extracted by an attacker. This will
ensure that password cracking attempts must occur on the device rather than on a remote
system.

References

● Android Developer Documentation: Android keystore system
● DevicePolicyManager: getStorageEncryptionStatus()

© 2020 Trail of Bits Voatz Security Assessment | 72

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#getStorageEncryptionStatus()
https://developer.android.com/training/articles/keystore
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#getStorageEncryptionStatus()

29. PBDKF2 provides insu�ficient security margin for PIN codes
Severity: High Difficulty: Low
Type: Cryptography Finding ID: TOB-VOATZ-025
Target: PinCrypto.kt

Description
In the Android client, PBKDF2 with 1,000 iterations is used as a key derivation function
(KDF) to generate a cryptographic key from the user’s PIN. In this configuration, PBKDF2
provides an insufficient security margin due to the extremely low entropy of 8-digit PIN
codes.

There are 99,999,999 possible options for 8-digit PIN codes, and common laptop
computers can guess ~100,000 PBKDF2 keys (with 1,000 iterations) per second. Therefore,
it only requires ~15 minutes to crack the user’s PIN.

Exploit Scenario
An attacker compromises data encrypted with a user PIN derived from PBKDF2. The
attacker fully exhausts the possible PIN codes in a short time period.

Recommendation
Short term, follow NIST 800-163 guidelines for setting the iteration count of PBKDF2. This
will reduce the rate at which an attacker can guess user PINs.

… the computation required for key derivation by legitimate users also increases with the
number of iterations. The user may perceive this increase, for example, in the time
required for authentication, or in the time to access the protected data on the storage
medium. There is an obvious tradeoff: larger iteration counts make attacks more costly,
but hurt performance for the authorized user. The number of iterations should be set
as high as can be tolerated for the environment, while maintaining acceptable
performance.

Long-term, replace PBKDF2 with Argon2id or scrypt . These modern KDFs are memory-hard
and therefore will frustrate attempts at parallelization and brute-force password cracking
to a greater degree than PBKDF2. To comply with NIST 800-163, Argon2id is based on AES,
and scrypt is based on SHA-256, making either one acceptable for use in the absence of
strict FIPS 140 requirements.

References

● NIST Authenticator and Verifier Requirements
● Wikipedia: Argon2 and scrypt

© 2020 Trail of Bits Voatz Security Assessment | 73

https://pages.nist.gov/800-63-3/sp800-63b.html#sec5
https://github.com/P-H-C/phc-winner-argon2
https://en.wikipedia.org/wiki/Scrypt
https://pages.nist.gov/800-63-3/sp800-63b.html#sec5
https://en.wikipedia.org/wiki/Argon2
https://en.wikipedia.org/wiki/Scrypt

30. Third-party apps can capture the Android client screen and read
screenshots taken from the client
Severity: High Difficulty: Medium
Type: Data Exposure Finding ID: TOB-VOATZ-032
Target: Voatz Android Client

Description
The android.media.projection API was introduced in Android 5.0 . It allows any
third-party app on the phone to perform a screen capture of other running apps, including
the Voatz client. Such a third-party app can capture everything on the device’s screen, even
sensitive activity such as password keystrokes. Third-party apps may continue recording
the screen even after the user terminates/closes the app, but not after a reboot.

The Voatz client can prevent this behavior by enabling the FLAG_SECURE flag. Screenshots
taken by the user are, by default, stored on the phone’s SD card where they are accessible
to any other application. The FLAG_SECURE flag also has the added benefit of preventing
screenshots.

Exploit Scenario
Alice writes a malicious app that Bob installs. Alice’s app surreptitiously records and
exfiltrates a recording of Bob’s use of the Voatz app as he is entering his sensitive
information and ballot choices.

Recommendation
Short term, protect all sensitive windows within the Voatz app by enabling the FLAG_SECURE
flag. This will prevent malicious third-party apps from recording usage of the Voatz app and
taking screenshots of sensitive information.

Long term, ensure that developer documentation is updated to include screen capture and
recording as potential threats for data exposure.

© 2020 Trail of Bits Voatz Security Assessment | 74

https://developer.android.com/about/versions/android-5.0.html

31. Android release build signing key password and keystore password
stored in git
Severity: High Difficulty: High
Type: Data Exposure Finding ID: TOB-VOATZ-003
Target: app/build.gradle

Description
The authentication key password and keystore password used for the androidvma code
signing key are stored in plaintext in the build.gradle file currently on the master branch
of the android repository. This key appears to be used for code signing release builds of
the Android application.

Although the passwords may only be used to authenticate use of the actual key, it is
considered bad practice to hardcode and store such authenticating credentials in the git
repository because an attacker with access to the androidkeystore can authenticate and
use these keys.

Exploit Scenario
Voatz developer Bob has his machine compromised by an attacker, Alice. Knowing that Bob
has code signing keys in the Android keystore on his machine, Alice is able to use the
keystore credentials to authenticate and perform a code signing operation.

Recommendation
Short term, remove these passwords from the git repository and repository history.
Instead, integrate them into the CI/CD pipeline accordingly.

Long term, assess the storage of sensitive credentials in order to minimize the capability of
a well-positioned attacker.

© 2020 Trail of Bits Voatz Security Assessment | 75

32. A malicious website can read from the Android client’s internal storage
Severity: High Difficulty: High
Type: Data Exposure Finding ID: TOB-VOATZ-035
Target: WebViewExtension.kt

Description
The Android client uses a WebView to, for example, access the Voatz “contact us” webpage
during the signup process. By default, Android WebViews allow the webpage to access the
app’s local storage.

Exploit Scenario
Alice compromises a web page accessed from the Voatz Android client’s WebView. She can
leverage this access to exfiltrate all of the internal storage of the Voatz Android client.

Recommendation
Short term, explicitly set the setAllowFileAccess method to false :

webview.getSettings().setAllowFileAccess(false);

Long term, add tests to ensure that malicious websites cannot read the client’s internal
storage via a WebView.

© 2020 Trail of Bits Voatz Security Assessment | 76

33. Insu�ficient Android deviceId construction
Severity: Low Difficulty: Low
Type: Session Management Finding ID: TOB-VOATZ-008
Target: ContextExtension.kt

Description
The Android client uses Settings.Secure.ANDROID_ID to construct a deviceId for
uniquely identifying their device. It should not be assumed that this identifier is persistent,
since factory-reset operations are known to reset this ID.

Furthermore, it has been noted that this function may return null . It should not be
assumed any specific Android model will not return null under specific conditions or in a
future update. However, the Android client lacks a null check to validate the obtained
ANDROID_ID before it is prepended with “ and- ” to construct the deviceId .

Exploit Scenario
Alice downloads the Voatz app and attempts to complete the onboarding process.
Unfortunately, Alice’s device returns an ANDROID_ID of null , causing her deviceId to be
constructed as “ and-null, ” which the Voatz backend will currently fail to validate as it is
not a valid deviceId . This means Alice can continue to use the application despite the lack
of a valid deviceId .

Recommendation
Short term, check for the null case when obtaining the ANDROID_ID , document the effects
of a factory reset operation on the Android deviceId , and provide clear instructions for
how voters can remediate the problem if it occurs.

Long term, review all unique identifiers for users and ensure they cannot collide with one
another. Ensure users are made wellaware of cases in which these identifiers could change
and affect their voting experience.

© 2020 Trail of Bits Voatz Security Assessment | 77

34. Android client does not use the SafetyNet Attestation API
Severity: Low Difficulty: High
Type: Configuration Finding ID: TOB-VOATZ-037
Target: Voatz Android Client

Description
The SafetyNet Attestation API is not checked by the Voatz Android client.

Google Play provides the SafetyNet Attestation API for assessing the safety of the device
that apps are running on. The API uses software and hardware information to provide a
cryptographically signed attestation about the overall integrity of the device. This can
provide an additional line of anti-tamper defense in conjunction with Zimperium.

The SafetyNet Attestation API is capable of handling devices that have passed Compatibility
Test Suite (CTS) certification and devices that have not (via the basicIntegrity parameter).

Exploit Scenario
Alice is using a phone that has been rooted and has malware on it. The modifications to
her device would be detected by Google through the SafetyNet Attestation API; however,
the Voatz app does not check it before allowing Alice to vote.

Recommendation
Short term, use the SafetyNet Attestation API to assess the integrity and safety of the user's
device. Configure the Attestation API to use the basicIntegrity parameter to support
devices that have not passed CTS certification.

Long term, require an affirmative ctsProfileMatch result which indicates that the user is
in possession of a device that passed CTS certification. Devices without a CTS certification
possess unknown security risks and increase the likelihood that the device has been
compromised.

References

● Android Developer Documentation: SafetyNet Attestation API
● Inside Android’s SafetyNet Attestation: Attack and Defense

© 2020 Trail of Bits Voatz Security Assessment | 78

https://source.android.com/compatibility/cts
https://source.android.com/compatibility/cts
https://developer.android.com/training/safetynet/attestation.html
https://www.mulliner.org/collin/publications/eu-17-Mulliner-Kozyrakis-Inside-Androids-SafetyNet-Attestation.pdf

35. Android client does not use the SafetyNet Verify Apps API
Severity: Low Difficulty: High
Type: Configuration Finding ID: TOB-VOATZ-045
Target: Voatz Android Client

Description
The SafetyNet Verify Apps API is not checked by the Voatz Android client.

Google Play provides the SafetyNet Verify Apps API to check whether there are potentially
harmful apps on a user’s device. Google monitors and profiles the behavior of Android
apps, and informs users of potentially harmful apps via the Verify Apps feature. Users are
notified and encouraged to remove the app. However, they are free to disable this feature
and free to ignore these warnings. The SafetyNet Verify Apps API can tell Voatz whether
this feature is enabled and whether any such apps remain on the user’s device. This can
provide an additional line of defense in conjunction with Zimperium.

Exploit Scenario
Alice has unknowingly installed a malicious application on her Android device that is
detected by Google SafetyNet but not by Zimperium. She ignores the warnings to uninstall
the app because it includes a game she enjoys. Alice uses the Voatz app to participate in an
election. The malicious app abuses available Android Intents and access to phone storage
to manipulate or record her actions with the Voatz app.

Recommendation
Short term, use the SafetyNet Verify Apps API to require that this feature be enabled for all
Voatz users, and ensure that known, harmful apps are not installed on their devices.

Long term, stay updated on new security features in Android and continue adding relevant
safety protections to the Voatz mobile clients.

References

● Android Developer Documentation: SafetyNet Verify Apps API
● App security best practices

© 2020 Trail of Bits Voatz Security Assessment | 79

https://developer.android.com/training/safetynet/verify-apps
https://developer.android.com/topic/security/best-practices

36. Certificate pinning is only configured for the main Voatz domain
Severity: Low Difficulty: High
Type: Cryptography Finding ID: TOB-VOATZ-026
Target: network_security_config.xml

Description
Voatz uses TrustKit to force certificate pinning. However, the only certificates pinned are
those of the primary Voatz API domain, not any of the third-party services used. This means
an attacker could still potentially man-in-the-middle calls to APIs other than the primary
one used.

Exploit Scenario
An attacker performs a man-in-the-middle attack against calls to the Jumio identity
verification service to steal user PII. The included certificate pinning is ineffective, because
the calls are not to the Voatz domain.

Recommendation
Short term, pin certificates for all third-party APIs in the TrustKit configuration.

Long term, audit all network calls made by the application and maintain a list of domains
accessed. For each domain, ensure calls are only made using TLS with certificate pinning.

© 2020 Trail of Bits Voatz Security Assessment | 80

37. No explicit verification of the Android Security Provider
Severity: Low Difficulty: High
Type: Patching Finding ID: TOB-VOATZ-034
Target: Voatz Android Client

Description
The Voatz Android client does not explicitly check whether it is running on a device that has
an up-to-date Android Security Provider.

The Security Provider is responsible for providing secure network communications, such as
SSL/TLS. Running Voatz on a device with an outdated Security Provider exposes it to
network attacks. For example, it can allow an attacker on the network to decrypt and
compromise Voatz’ SSL/TLS traffic.

Zimperium’s library may provide some or all of these checks; however, that library must be
included and configured appropriately to do so, and there is no guarantee the library will
be included with Voatz in the future (see the December 2018 security review by ShiftState).

Exploit Scenario
A new vulnerability discovered in Android can be exploited to produce a man-in-the-middle
attack (similar to CVE-2014-0224). Bob has not upgraded his phone to include the latest
version of the Android Security Provider to mitigate this vulnerability, and his SSL traffic to
the Voatz API server can be snooped and modified.

Recommendation
Short term, on every app startup, run ProviderInstaller.installIfNeeded() supplied by
Google Play services. This method will ensure that the Android Security Provider is up to
date. If the Security Provider remains out of date or an error occurs, this method will throw
an exception and Voatz should decline to run.

Long term, continue adding anti-tamper and security update protections to the Voatz
clients.

References

● Android Developer Documentation: ProviderInstaller.installIfNeeded()
● Update your security provider to protect against SSL exploits

© 2020 Trail of Bits Voatz Security Assessment | 81

https://nvd.nist.gov/vuln/detail/CVE-2014-0224
https://developers.google.com/android/reference/com/google/android/gms/security/ProviderInstaller#installIfNeeded(android.content.Context)
https://developer.android.com/training/articles/security-gms-provider

38. Jumio Netverify API credentials stored in git
Severity: Undetermined Difficulty: Low
Type: Data Exposure Finding ID: TOB-VOATZ-001
Target: IDVStartActivity.java

Description
The Jumio Netverify API token and secret were added to the Android client repository in
commit d1e9a0c0e8bb26ab27d39876f4b2210c0d235d9f . Specifically, they were included on
lines 48–50 of:

app/src/main/java/voatz/nimsim/com/voatz/
ui/registration/IDVStartActivity.java

While this file was later deleted in commit 764826e43dd48891cd047ac93b7ddcc5c4f61113 ,
the credentials still exist in the git history.

The severity of this finding is Undetermined because it is unclear whether the API
credentials are still valid.

Exploit Scenario
Alice is given access to the Voatz Android git repository (e.g. , as a new employee of Voatz, or
as an employee of a subcontractor working with Voatz). Alice discovers the Netverify API
credentials, which allows her to use them for her own purposes, potentially incurring usage
fees billed to Voatz. She can also use the Netverify Retrieval and Delete APIs to exfiltrate
sensitive voter data and delete voter data, compromising the auditability of the election.

Recommendation
Short term, rebase the Android git repository to remove this API token and secret. Check
whether the credentials are still active and, if so, revoke them and generate new ones.

Long term, integrate a tool like truffleHog into your git hooks to prevent sensitive
information from being committed to the repository in the first place.

References

● TruffleHog

© 2020 Trail of Bits Voatz Security Assessment | 82

https://github.com/Jumio/implementation-guides/blob/deb302de54fa32a4bc75e00f7a101656d653109f/netverify/netverify-retrieval-api.md
https://github.com/Jumio/implementation-guides/blob/5e99873e54186e4140eb89c76649bde554fbb81a/netverify/netverify-delete-api.md
https://github.com/dxa4481/truffleHog

39. Google Services API key stored in git
Severity: Undetermined Difficulty: Low
Type: Data Exposure Finding ID: TOB-VOATZ-002
Target: google-services.json

Description
Voatz’ Google Services API key was added to the Android client repository in commit
d1e9a0c0e8bb26ab27d39876f4b2210c0d235d9f . Specifically, it was included on lines 22–25
of:

app/google-services.json

Although this file was later deleted in commit
764826e43dd48891cd047ac93b7ddcc5c4f61113 , the credentials still exist in the Git history.

The severity of this finding is Undetermined because it is unclear whether the API key is still
valid, and the restrictions placed on this specific key are unknown.

Exploit Scenario
Alice is given access to the Voatz Android Git repository (e.g. , as a new employee of Voatz,
or as an employee of a subcontractor working with Voatz). Alice discovers the Google
Services API key and is able to interact with Google Services as if she were
Voatz—potentially incurring usage fees billed to Voatz and accessing Voatz cloud data.

Recommendation
Short term, rebase the Android git repository to remove this API key. Check whether the
key is still active and, if so, revoke it and generate a new one.

Long term, integrate a tool like truffleHog into your Git hooks to prevent sensitive
information from being committed to the repository in the first place.

References

● TruffleHog

© 2020 Trail of Bits Voatz Security Assessment | 83

https://github.com/dxa4481/truffleHog

40. A malicious website may be able to execute JavaScript within the
Android client
Severity: Informational Difficulty: High
Type: Access Controls Finding ID: TOB-VOATZ-036
Target: WebViewExtension.kt

Description
The Android client uses a WebView to, for example, access the Voatz “contact us” webpage
during the signup process. By default, Android WebViews disable JavaScript, but it is a good
idea to explicitly disable it.

Exploit Scenario
A future update to Android changes the default JavaScript behavior of WebViews, allowing
an attacker with control of a webpage loaded from the WebView to run malicious code
within the Voatz Android client.

Recommendation
Short term, explicitly set the setJavaScriptEnabled method to false :

webview.getSettings().setJavaScriptEnabled(false);

Long term, add tests to ensure that malicious websites cannot execute JavaScript via a
WebView.

© 2020 Trail of Bits Voatz Security Assessment | 84

iOS Findings

41. The iOS client does not disable custom keyboards
Severity: Medium Difficulty: Medium
Type: Data Exposure Finding ID: TOB-VOATZ-040
Target: AppDelegate.swift

Description
The Voatz iOS client does not disable custom keyboards. Since iOS 8, users have been able
to install custom keyboards that can be used in any app, replacing the system's default
keyboard. Custom keyboards can—and very frequently do—log and exfiltrate the data they
enter.

Custom keyboards are not enabled when the user types into a “Secure” field (such as
password fields) but they can potentially log all the user’s keystrokes in regular fields, such
as those used for the voter’s personal information or write-in candidates. Voatz does not
use system-managed input fields for username and password entry (TOB-VOATZ-042)’
therefore, those fields would get logged by custom keyboards.

Exploit Scenario
Alice creates a custom keyboard that Bob uses. Alice’s keyboard can silently exfiltrate all of
Bob’s keystrokes in the Voatz app.

Recommendation
Short term, disable third-party keyboards within the Voatz iOS client to prevent leakage of
sensitive data entered by the user. This can be achieved by implementing the
application:shouldAllowExtensionPointIdentifier: method within the Voatz client’s
UIApplicationDelegate .

Long term, stay abreast of changes to iOS that might permit data exfiltration from the
Voatz client.

References

● Apple Developer Documentation: UIApplicationDelegate

© 2020 Trail of Bits Voatz Security Assessment | 85

https://developer.apple.com/documentation/uikit/uiapplicationdelegate

42. The iOS client does not use system-managed login input fields
Severity: Low Difficulty: Low
Type: Configuration Finding ID: TOB-VOATZ-042
Target: Voatz iOS Client

Description
The Voatz iOS client does not specify text fields marked as username and password input
fields. Since iOS 12, the iOS SDK has included text field properties to automate the process
of password generation and credential entry, offering to auto-generate strong passwords
and save them in the system keychain or a password manager. This could be used for the
current PIN entry field.

Furthermore, identifying these fields as login input fields may help prevent entered text
from being misused by iOS. Text entered into fields that lack these identifiers may be sent
to a spellcheck service, added to an auto-complete dictionary, or otherwise cached in a way
that increases their risk of exposure.

Figure TOB-VOATZ-042.1: iOS offers to generate strong passwords for identified login fields.

© 2020 Trail of Bits Voatz Security Assessment | 86

Figure TOB-VOATZ-042.2: Current Voatz PIN entry field without this feature.

Exploit Scenario
Bob installs Voatz and cannot use a machine-generated PIN since Voatz does not use
system-managed login input fields on iOS. Bob chooses an insecure PIN code, and it is
cached into an auto-complete dictionary by iOS.

Recommendation
Short term, use the UITextContentType property introduced in iOS 12 to identify
username and password fields, allowing automated password generation and
management.

Long term, stay abreast of new security features added to the iOS SDK.

References

● Apple Developer Document: textContentType
● About the Password AutoFill Workflow

© 2020 Trail of Bits Voatz Security Assessment | 87

https://developer.apple.com/documentation/uikit/uitextinputtraits/1649656-textcontenttype?language=swift
https://developer.apple.com/documentation/security/password_autofill/about_the_password_autofill_workflow

43. iOS client keychain items are not excluded from iCloud and iTunes
backups
Severity: Low Difficulty: High
Type: Data Exposure Finding ID: TOB-VOATZ-043
Target: Voatz iOS Client

Description
The Voatz iOS client does not prohibit its keychain items from being saved to an iTunes
backup or uploaded to iCloud. Both Apple, Inc. and any attacker with access to a voter’s
iTunes or iCloud backup will have access to a voter’s private data.

Exploit Scenario
Alice gains physical access to Bob’s phone, and knows his passcode. She initiates a backup
of Bob’s phone to iTunes from which she is able to extract all of Voatz’ sensitive keychain
data. Alternatively, Mallory identifies voter email addresses, then uses a previously
disclosed password database to guess their current iCloud passwords. She retrieves iCloud
backups that contain sensitive Voatz keychain data from a large number of users.

Recommendation
Short term, explicitly set a ThisDeviceOnly accessibility class (such as
kSecAttrAccessibleWhenUnlockedThisDeviceOnly) for all keychain items. This should
prevent keychain data from being migrated to iTunes and iCloud backups.

Long term, empirically validate that no sensitive data is stored to a backup of the Voatz iOS
application. Consider uniform usage of a wrapper, such as Square’s Valet , to simplify
storage and retrieval of data from the keychain.

References

● Apple Developer Documentation: Keychain Services
● Square Valet

© 2020 Trail of Bits Voatz Security Assessment | 88

https://github.com/square/Valet
https://developer.apple.com/documentation/security/keychain_services
https://github.com/square/Valet

44. Cryptographic credentials are not generated in the iOS Secure Enclave
Severity: Low Difficulty: High
Type: Cryptography Finding ID: TOB-VOATZ-041
Target: CryptoExportImportManager.swift

Description
The Voatz iOS client does not use the Secure Enclave API to securely generate its keys.

iOS 13 provides an API that generates and stores cryptographic credentials inside the
Secure Enclave. This means that cryptographic credentials never actually leave the Secure
Enclave and are therefore never stored in plaintext in memory. This feature is available on
all iOS devices with an A7 chip or newer.

Exploit Scenario
Mallory compromises the iOS device of a prospective voter. She uses her access to read the
voter's cryptographic credentials from memory and is able to communicate with the Voatz
API server directly on behalf of the voter.

Recommendation
Short term, use the Secure Enclave when performing any cryptographic operation on the
device to avoid revealing sensitive credentials in memory to the application processor.

Long term, stay abreast of new cryptographic features added to the iOS SDK.

References

● Apple Developer Documentation: Storing Keys in the Secure Enclave
● Apple Platform Security: Secure Enclave Overview

© 2020 Trail of Bits Voatz Security Assessment | 89

https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/storing_keys_in_the_secure_enclave
https://support.apple.com/guide/security/secure-enclave-overview-sec59b0b31ff/1/web/1

45. iOS client disables App Transport Security (ATS)
Severity: Low Difficulty: High
Type: Cryptography Finding ID: TOB-VOATZ-044
Target: Voatz iOS Client

Description
App Transport Security is disabled by the Voatz iOS app.

Apple platforms include a network security feature called App Transport Security (ATS) that
improves the use of encryption and integrity protections for network communications. It
does this by requiring that network connections are secured by Transport Layer Security
(TLS) with stronger-than-default certificates and ciphers. ATS blocks connections that fail to
meet minimum security requirements.

Figure TOB-VOATZ-044.1: Apple Transport Security is fully disabled by the Voatz iOS client.

By default, all TLS connections on iOS check that the server certificate:

● Has an intact digital signature
● Is not expired
● Has a name that matches the server’s DNS name
● Is signed by a certificate chain ending in a valid Certificate Authority

ATS requires these checks, and provides additional checks:

● The server certificate must be signed with an RSA key of at least 2048 bits or an ECC
key of at least 256 bits

● The server certificate must use SHA-2 with a digest length of at least 256 bits
● The connection must use TLS protocol version 1.2 or later
● Data must be exchanged using AES-128 or AES-256
● The link must support perfect forward secrecy (PFS) through an Elliptic Curve

Diffie-Hellman Ephemeral (ECDHE) key exchange

Zimperium’s library may provide some or all of these checks; however, that library must be
included and configured appropriately to do so, and there is no guarantee the library will
be included with Voatz in the future.

Exploit Scenario

© 2020 Trail of Bits Voatz Security Assessment | 90

Alice uses the Voatz app in an election, and her preferences are sent to Voatz via network
communications encrypted with an outdated version of TLS and weak ciphers. Bob is a
network administrator at an intermediate routing point with access to Alice’s network
traffic. He uses an active attack against the outdated version of TLS to decrypt Alice’s traffic,
or collects it for future decryption via the Logjam weakness of the server (for example).

Recommendation
Short term, precisely define the ATS exceptions required for the Voatz app. Configure ATS
exceptions only when needed, use the narrowest possible exception available, and
upgrade Voatz servers to meet the requirements imposed by ATS.

Long term, remove all exceptions. All network communications should meet the minimum
requirements imposed by ATS.

References

● Apple Developer Document: NSAllowsArbitraryLoads
● Preventing Insecure Network Connections
● RFC7457 : Summarizing Known Attacks on Transport Layer Security (TLS)

© 2020 Trail of Bits Voatz Security Assessment | 91

https://developer.apple.com/documentation/bundleresources/information_property_list/nsapptransportsecurity/nsallowsarbitraryloads
https://developer.apple.com/documentation/security/preventing_insecure_network_connections
https://tools.ietf.org/html/rfc7457

46. iOS client is vulnerable to object substitution attacks
Severity: Undetermined Difficulty: High
Type: Data Validation Finding ID: TOB-VOATZ-038
Target: Voatz iOS Client

Description
The insecure NSCoding protocol is used throughout the Voatz iOS client codebase, and in
its ZDetection and AWSCore dependencies. NSCoding is designed to allow serialization and
deserialization of code objects. However, this protocol does not verify the type of object
upon deserialization. Thus, it is vulnerable to object substitution attacks.

A maliciously crafted payload deserialized via the NSCoding protocol can result in execution
of attacker-controlled code. Apple provides the NSSecureCoding protocol, which is robust
to this type of attack. NSSecureCoding protects against object substitution attacks by
requiring the programmer to declare the expected type of object before deserialization
completes. Thus, if an invalid object is deserialized, the error can be handled safely.

The severity of this finding is Undetermined because it is unclear whether there are any
available attack vectors that can exploit the vulnerability.

Exploit Scenario
Alice gains control of a resource that is loaded into the iOS client via the NSCoding protocol.
This allows her to instantiate the object as whichever class she chooses.

Recommendation
Short term, migrate all classes that use NSCoding to NSSecureCoding .

Long term, ensure all input data is validated before it is used, especially when dealing with
data that becomes executable.

References

● NSSecure Coding: Everything you need to know about NSSecureCoding
● Apple Developer Documentation: NSSecureCoding

© 2020 Trail of Bits Voatz Security Assessment | 92

https://nshipster.com/nssecurecoding/
https://developer.apple.com/documentation/foundation/nssecurecoding?language=objc

47. An iOS user can lose their registration
Severity: Informational Difficulty: Low
Type: Session Management Finding ID: TOB-VOATZ-007
Target: AppState.swift

Description
The iOS client uses identifierForVendor.uuidString as a device ID for uniquely
identifying their device. This identifier is guaranteed to change if the user deletes and
subsequently reinstalls the Voatz app .

Exploit Scenario
Alice downloads the Voatz app and completes the onboarding process. She deletes and
subsequently reinstalls the Voatz app some time after onboarding but before voting. When
the app is reinstalled, she receives a new device ID. From the perspective of the Voatz Core
Server API, it will appear as if she is connecting from a completely new device.

We were not able to test this scenario on a live Voatz instance because, at the time of its
discovery, we did not have access to a dedicated API backend for testing. It may be the case
that Voatz has a mitigation for this scenario; however, it is unclear whether this would
involve a manual mitigation (e.g. , having to contact Voatz support for an account reset).

Recommendation
Voatz has indicated that this is intended behavior; any changes to a device ID should
necessitate a re-registration.

Short term, document this behavior in the iOS application, and provide clear instructions
for how users can remediate the problem if it occurs.

© 2020 Trail of Bits Voatz Security Assessment | 93

https://developer.apple.com/documentation/uikit/uidevice/1620059-identifierforvendor
https://developer.apple.com/documentation/uikit/uidevice/1620059-identifierforvendor

48. iOS client is susceptible to URI scheme hijacking
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-VOATZ-039
Target: Voatz iOS Client

Description
The Voatz iOS client defines the voatz:// URI scheme for receiving messages from other
apps on the device. URI schemes can be hijacked by another app if the malicious app
registers the same scheme and is also installed on the device. Consequently, a rogue app
could receive messages sent via URI schemes intended for Voatz.

The severity of this finding is Informational, since it does not appear that Voatz is currently
using messages sent via its URI scheme.

Exploit Scenario
A future refactor to Voatz makes use of its URI scheme to accept OAuth tokens or
credentials sent via email or SMS. Alice creates a malicious app using the same voatz://
URI scheme and coerces Bob to install it. When Bob receives his credential, Alice's app
receives it instead of Voatz.

Recommendation
Short term, confirm that the voatz:// URI scheme is not used for messaging, and
document the code to ensure that it never shall be.

Long term, transition to “Universal Links” introduced in iOS 9. These allow apps to register
web domains that are solely owned by the app.

References

● Apple Developer Documentation: Support Universal Links

© 2020 Trail of Bits Voatz Security Assessment | 94

https://developer.apple.com/library/archive/documentation/General/Conceptual/AppSearch/UniversalLinks.html

A. Vulnerability Classifications
Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices, or
software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to race conditions, locking, or order of operations

Undefined Behavior Related to undefined behavior triggered by the program

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

Medium Individual user’s information is at risk, exploitation would be bad for
client’s reputation, moderate financial impact, possible legal

© 2020 Trail of Bits Voatz Security Assessment | 95

implications for client

High Large numbers of users, very bad for client’s reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may
need to know extremely complex technical details, or must discover
other weaknesses in order to exploit this issue

© 2020 Trail of Bits Voatz Security Assessment | 96

B. Review of Prior Security Assessments
Trail of Bits was given access to the redacted reports resulting from four of Voatz’ prior
security reviews.

The National Cybersecurity Center (NCC) publicly released a fifth assessment report in
August 2019. NCC is a private entity, distinct from and unrelated to the Department of
Homeland Security’s National Cybersecurity and Communications Integration Center
(NCCIC). NCC also has no relation to the NCC Group , an international information assurance
firm founded seventeen years prior to NCC. NCC does not employ any technical security
experts . Therefore, the content of the NCC report functions more like a user acceptance
test , validating not that the system is secure, but rather that its features and operation meet
the needs of the user.

During the course of Voatz’ engagement with Trail of Bits, a sixth “black-box” assessment
was independently performed by MIT researchers, focusing on the Voatz Android mobile
client. The MIT assessment had neither sanction nor assistance from Voatz.

To the best of our knowledge, no assessment prior to ours has been scoped to include the
discovery of Voatz core server and backend software vulnerabilities. Trail of Bits has
performed the first system-wide, “ white-box ” assessment of Voatz. Also, while this report is
intended for both technical and non-technical audiences, the previous technical reports
provided summaries targeting only engineers.

The rest of this section discusses the chronology, methodology, findings, and results of the
four previous technical assessments as well as the unsanctioned MIT assessment.

1. July 2018
In July 2018, REDACTED SECURITY VENDOR reviewed the security of the Voatz iOS and
Android mobile applications. Their report does not indicate the level of effort for the
project. This security review appears to have been conducted as a “black-box” audit, i.e. ,
without source code access. It appears that only the mobile clients were in scope, and the
servers and cloud infrastructure were not.

Four low-severity configuration issues were identified, including issues with password
policies, registration, brute force protections, and cookie settings.

2. October 2018
In October 2018, TLDR Security broadly reviewed the application, cloud, mobile, and
corporate security of Voatz. Their report does not indicate the level of effort for the project.

© 2020 Trail of Bits Voatz Security Assessment | 97

https://cyber-center.org/wp-content/uploads/2019/08/Mobile-Voting-Audit-Report-on-the-Denver-County-Pilots-FINAL.pdf
https://www.linkedin.com/company/national-cybersecurity-center/
https://www.linkedin.com/company/national-cybersecurity-center/
https://en.wikipedia.org/wiki/Acceptance_testing#User_acceptance_testing
https://en.wikipedia.org/wiki/Acceptance_testing#User_acceptance_testing
https://en.wikipedia.org/wiki/White-box_testing

The assessment provided high-level security hygiene. It was scoped to cover a shallow
analysis of the system architecture (e.g. , cloud asset policies and configurations), manual
analysis of user and data workflows, and threat mitigation planning (e.g. , access control
policies).

Four high-severity issues were discovered in S3 bucket permissions, server monitoring,
corporate device control, and password management; two medium-severity issues in
DMARC controls and cloud configuration; and one low-severity issue related to denial-of-
service mitigations. Their report also reviewed the Hyperledger smart contracts, and found
three medium-severity issues in the TLS configuration, a dependence on mobile clients for
security, limited peer diversity, and one low-severity issue related to code quality.

3. December 2018
In December 2018, ShiftState Security conducted a post-election security review of Voatz to
determine whether best practices were followed during the 2018 General Election in West
Virginia, when Voatz was used by 144 military personnel stationed overseas. Their report
does not indicate the level of effort for the project. Application and source code review
were not in scope for this assessment.

Issues with ad hoc and limited logging, unmanaged servers, and opportunities for denial of
service were discovered during the review. It was also revealed that Zimperium’s
anti-mobile malware solution was not enabled during the pilot.

4. October 2019
In October 2019, the DHS Cybersecurity and Infrastructure Agency (CISA) conducted a one-
week assessment of Voatz’ servers and logs for signs of existing compromise. This included
Voatz’ internal network at their corporate headquarters and their cloud resources in both
Amazon Web Services and Microsoft Azure. No source code was reviewed.

Issues with unmonitored PowerShell scripting, unmanaged local accounts, limited software
control, ad hoc logging, and over-permissioned and weakly managed cloud accounts were
discovered. No signs of existing compromise were found.

The MIT Report
On February 5th, 2020, Trail of Bits was given an anonymized, summary report of security
issues in the Voatz Android mobile application externally reported to the DHS CISA. Six
vulnerabilities were described, primarily related to the Android mobile application
(version 1.1.60, circa September 24, 2019). Trail of Bits began verifying the issues and
provided an initial evaluation confirming the presence of the described vulnerabilities to
Voatz on February 11th.

© 2020 Trail of Bits Voatz Security Assessment | 98

On February 13th, Specter, Koppel, and Weitzner published The Ballot is Busted Before the
Blockchain: A Security Analysis of Voatz, the First Internet Voting Application Used in U.S. Federal
Elections , revealing themselves as the originators of the report to DHS. On the same day,
Voatz released a blog post, Voatz Response to Researchers’ Flawed Report , refuting the report.
On the following day, February 14th, the MIT researchers released an FAQ about their
paper.

Voatz presented three objections to the MIT report:

Objection 1

The researchers were analyzing an Android version of the Voatz mobile voting app that
was at least 27 versions old at the time of their disclosure and not used in an election.

The version of the app assessed by the MIT researchers was from late September 2019,
approximately four months before they started their assessment. In our review, we did not
identify any security relevant changes in the codebase between September 2019 and the
code delivered at the start of this engagement other than: 1) minor changes to Zimperium;
and 2) a minor change in the cryptographic handshake protocol. Neither change
substantively affects MIT’s claims.

Objection 2

As the researchers admitted, the outdated app was never connected to the Voatz servers,
which are hosted on Amazon AWS and Microsoft Azure. This means that they were
unable to register, unable to pass the layers of identity checks to impersonate a
legitimate voter, unable to receive a legitimate ballot, and unable to submit any
legitimate votes or change any voter data.

This is correct—the modified client never connected to Voatz infrastructure. The MIT paper
made no claims regarding registration, onboarding, ballot processing, and backend vote
integrity.

Objection 3

In the absence of trying to access the Voatz servers, the researchers fabricated an
imagined version of the Voatz servers, hypothesized how they worked, and then made
assumptions about the interactions between the system components that are simply
false. This flawed approach invalidates any claims about their ability to compromise the
overall system. In short, to make claims about a backend server without any evidence or
connection to the server negates any degree of credibility on behalf of the researchers.

© 2020 Trail of Bits Voatz Security Assessment | 99

https://internetpolicy.mit.edu/wp-content/uploads/2020/02/SecurityAnalysisOfVoatz_Public.pdf
https://internetpolicy.mit.edu/wp-content/uploads/2020/02/SecurityAnalysisOfVoatz_Public.pdf
https://internetpolicy.mit.edu/wp-content/uploads/2020/02/SecurityAnalysisOfVoatz_Public.pdf
https://blog.voatz.com/?p=1209
https://internetpolicy.mit.edu/faq-on-the-security-analysis-of-voatz/

Developing a mock server in instances where connecting to a production server might
result in legal action is a standard practice in vulnerability research. It is also a standard
practice in software testing. The MIT findings are focused within the Android client and do
not rely on intimate knowledge of the Voatz servers.

The remainder of this section outlines the primary claims covered in the MIT paper,
whether we can confirm their existence, and what mitigations existed or have since been
added to address the vulnerabilities.

B.1 Side-channel information leak
Claim: A passive observer can determine the ballot entries of a voter solely by the size of
their encrypted vote submission message.

Status: Voatz claims that the clients have been modified to include padding before the
ballot data is transmitted. However, we were unable to find this feature in the codebase.
Padding does occur within the backend, however. It may be the case that it was added to
clients in a feature branch that has not yet been merged into the development branch, and
therefore was not provided to us.

Likelihood: Moderate. The ballot submission message data, in addition to the identifiers of
the voter’s ballot choices, also includes the ballot statements and descriptions for the
choices. Ballot submissions will almost certainly vary in size in predictable ways depending
on the voter’s choices. An attacker exploiting this vulnerability must have control over a
node in the network route between the voter and Voatz. Under normal circumstances, this
is unlikely. However, Voatz is intended to be used by overseas voters in which network
infrastructure is likely controlled by foreign governments.

Recommendation: Ensure that all vote submission messages are exactly the same size.

B.2 Voter disenfranchisement via network disruption
Claim: An active network participant (e.g. , one with control over any node in the route from
the voter to the Voatz API server) can choose to drop a user’s messages to the Voatz server.
Moreover, the mechanism described in B.1 can be exploited to selectively drop only ballots
that contain certain votes.

Status: Confirmed. There is no mechanism that would prevent this attack.

Likelihood: High. An attacker exploiting this vulnerability must have control over a node in
the network route between the voter and Voatz. Under normal circumstances, this is
unlikely. However, Voatz is intended to be used by overseas voters in which network
infrastructure is likely controlled by foreign governments. If exploited, a voter would be
aware that they were disenfranchised since they would not receive a ballot receipt (unless

© 2020 Trail of Bits Voatz Security Assessment | 100

this exploit is combined with an attack against the transport layer security of the system
plus an attack against the underlying cryptographic protocol). However, an attacker with
knowledge of voters’ E-mail addresses can craft or copy a valid ballot and E-mail it to
disenfranchised voters.

Recommendation: Stand up redundant API endpoints in different IP ranges and
geographic regions to make it harder to exploit this vulnerability at scale. Devise a way for
voters to independently verify the validity of their ballots.

B.3 On-device security circumvention
Claim: The libraries used for threat detection in the mobile clients can be disabled on
rooted devices, allowing the clients to be run on unsupported devices as well as with
modified versions of the client.

Status: Confirmed. We were able to build a version of the Android application with threat
detection disabled. There does not appear to have been any additional mitigations added
since version 1.1.60. See finding TOB-VOATZ-29 .

Likelihood: Moderate. An adversary with sufficient resources could release a modified
version of the app to the public (e.g., through ad hoc distribution), or remotely modify a
legitimately installed version of the app if they have root access to the device.

Recommendation: In general, there is no way to prevent modified clients from interacting
with the system, or a sufficiently advanced adversary from reverse-engineering the
communication protocol and writing a custom client. Ensure that the security of the Voatz
protocol does not rely on the assumption that the official, unmodified clients are being run.

B.4 GUI modification and data exfiltration
Claim: On a rooted device, and with Zimperium disabled (B.3), it is trivial to change the
user interface of the Voatz application to, for example, make the software vote for a
candidate not chosen by the user.

Status: Confirmed. If an attacker has control of a rooted device, they can modify any
application arbitrarily.

Likelihood: Moderate. Any vote modified by a malicious client would also be detectable by
the voter given his or her receipt from the server.

Recommendation: Continue striving to employ state-of-the-art tamper detection
technology. Educate voters that there is no foolproof way to secure a mobile device to
prevent tampering.

© 2020 Trail of Bits Voatz Security Assessment | 101

B.5 PIN cracking
Claim: An attacker with access to the Voatz app’s storage (e.g. , on a rooted device) can
trivially compromise a user’s Voatz PIN, even if the Voatz app is not running.

Status: Confirmed. See TOB-VOATZ-048 .

Likelihood: High. Related vulnerabilities such as TOB-VOATZ-048 allow an attacker to
compromise the Voatz database, revealing the user’s voting history, and potentially
allowing the attacker to vote on behalf of the user.

Recommendation: Allow and encourage users to enter a password with greater entropy.
Allow and encourage users to provide a second factor of authentication necessary for each
login. Store all sensitive information within the Android keystore.

B.6 Server compromise
Claim: The anonymous researchers who submitted the report to DHS speculate (but have
no proof) that anyone with access to the API server can alter, expose, or discard any user’s
vote. They also observe that there is no evidence of any blockchain verification code in the
client.

Status: Confirmed, on all accounts. However, in order to alter a vote that has already been
cast, the attacker would also need to have control over the Hyperledger Fabric blockchain.
The credentials for accessing the blockchain are stored on the API server. An attacker who
can modify the software running in the API server can alter, expose, or discard any user’s
vote. The clients do not interact with the blockchain directly, so there is no blockchain
verification code in the client.

Likelihood: The API server presents the largest target for a sufficiently advanced
adversary, such as a nation-state. The API server is a single target that would allow the
attacker to affect all votes in an election. However, there are several other targets that
could wreak havoc on an election. For example, an attacker with control over Voatz’
consumer cloud file hosting provider or the audit portal server could inject false data to call
the legitimacy of the vote into question.

Recommendation: Provide a cryptographic means for users to sign their own ballots in
the client and subsequently, independently verify their digitally signed ballots have been
recorded on the blockchain— without ever giving the backend access to the voter’s signing
credentials.

© 2020 Trail of Bits Voatz Security Assessment | 102

C. Insu�ficient validation of encrypted API requests
This appendix serves as a glossary of encrypted API request types, and the observed
consequences of insufficient data validation. This not only includes instances when the
device ID provided in the outer encapsulating packet is different from any specified in the
inner request data (as in TOB-VOATZ-014), but also fields that are wholly controlled by the
client. We have prioritized these findings based upon the potential for undefined and
potentially malicious behavior as a result of fields that are accepted from the client without
validation.

The table below illustrates the priority in which each “ ApiEncrypted ”-prefixed request type
should be reviewed for relevant fixes:

● High: Requests can be sent with modified data to produce some significant result.
● Moderate: Data validation does not exist or is ineffective, but this omission was not

exploitable in a meaningful way, or not fully assessed.
● None: This request type was not observed to include client-specified fields that lack

validation.
● Unknown: This request type was not reviewed. Any other impact indicates at least a

partial review.

Definition Priority Notes

ApiEncryptedCustomer
OidProfileCreate
Request

High Impact not fully assessed, although one can
bypass session validation by setting the outer
device ID to one that matches the session
cookie. This appears to allow spoofing of the
inner device ID sent to the later transactions,
among other fields.

ApiEncryptedPerformOrg
IdvRequest

High Impact not fully assessed, although one can
bypass session validation by setting the outer
device ID to the one that matches the session
cookie. This appears to allow spoofing of the
inner device ID sent to the later transactions,
among other fields.

ApiEncryptedAnonCustom
erCreateRequest

High Can spoof various fields (e.g., spoofing
deviceProfile to create an anonymous
customer with an arbitrary device ID).

ApiEncryptedCustomer
AuthenticateRequest

High If customerId matches the outer device ID, one
can supply a “bad” inner device ID which will get
passed to the authentication transaction.

© 2020 Trail of Bits Voatz Security Assessment | 103

ApiEncryptedVoteAsTree
Request

High If an outer device ID is associated with a
session cookie and inner customerId , other
fields can be spoofed in the later transaction.

ApiEncryptedVoteAs
StringRequest

High If an outer device ID is associated with a
session cookie and inner device ID, other fields
can be spoofed in the later transaction.

ApiEncryptedCustomer
LogoutRequest

High If customerId matches the outer device ID, one
can supply a “bad” inner device ID which will get
passed to the logout transaction.

ApiEncryptedThreat
DetectedRequest

High Does not validate inner device ID to outer
device ID. An attacker can pass an arbitrary
inner device ID they want to report a threat on,
and ban from authentication.

ApiEncryptedCustomer
PreRegisterRequest

Moderate Inner device ID is not validated against outer
device ID. Further impact not determined.

ApiEncryptedCustomer
VerifyOtpRequest

Moderate Can re-encrypt this request for another user,
and additional data validation can likely be
performed against the preRegisterId or other
fields.

ApiEncryptedCustomer
CompleteProvisioning
Request

Moderate Outer device ID is not validated against inner
customerId . This API endpoint requires further
investigation, as it may allow an attacker to
provision another user’s account with an
incorrect mobile number.

ApiEncryptedCustomer
ReregisterRequest

Moderate Inner device ID is not validated against outer
device ID. Other fields can be spoofed, which
may lead to interesting behaviour. See
TOB-VOATZ-022 for additional impact analysis.

ApiEncryptedCustomerRe
verifyOtpRequest

Moderate Can re-encrypt this request for another user;
additional data validation could be performed
here against preRegisterId or other fields.

ApiEncryptedControl
NumberIssueRequest

Unknown

ApiEncryptedControl
NumberReissueRequest

Unknown

ApiEncryptedGetVote
CountVMARequest

Unknown

© 2020 Trail of Bits Voatz Security Assessment | 104

ApiEncryptedGetVote
CountVMARequest

None Not useful; session cookie needs to correspond
to the phone number you request.

ApiEncryptedMessage
ListLast10ByCategory

None Not useful; session cookie needs to correspond
to the phone number you request.

ApiEncryptedEventList
ByOrganizationRequest

None Session cookie is used to pull customerId ,
which checks privileges.

ApiEncryptedCustomer
OidProfileGetBy
CustomerIdRequest

None Can bypass session cookie auth using outer
device ID, but inner device ID needs to be
associated with the outer device ID.

ApiEncryptedCustomer
VoteRequest

None customerId is validated against session cookie.
Only the vote data is encrypted.

ApiEncryptedCustomer
GetRequest

None Can bypass session cookie auth using outer
device ID, but inner customerId needs to be
associated with the outer device ID. customerId
is the only target field here.

ApiEncryptedGetNet
VerifyCredentials

None device ID is the only field here.

ApiEncryptedAndroidLvl
GetNonceRequest

None Validates inner/outer device IDs in the
isMaxConsecutiveAndroidLvlNonceReqValid
call.

ApiEncryptedAndroidLvl
CheckResponseRequest

None Validates inner/outer device ID in the
isMaxConsecutiveAndroidLvlCheckReqValid
call.

ApiEncryptedGetIapInfo
Request

None Validates inner/outer device ID in the
isMaxConsecutiveZiapConfigReqValid call.

ApiEncryptedGetVote
MetadataRequest

None Uses device ID on outer packet to validate
session and obtain the corresponding
customerId to act on.

ApiEncryptedEventList
ByCustomerRequest

None One can bypass session validation by setting
the outer device ID to the one that matches the
session cookie, and using a related customerId ,
but there are no other privileged fields.

ApiEncryptedCustomerUp
dateRequest

None If customerId matches the outer device ID, and
date-of-birth and other related checks can be
passed, it appears one can modify other fields,
but nothing otherwise privileged.

© 2020 Trail of Bits Voatz Security Assessment | 105

ApiEncryptedCustomer
UpdateWithIdvRequest

None If customerId matches the outer device ID, and
date-of-birth and other related checks can be
passed, it appears you can modify other fields,
but nothing otherwise privileged.

ApiEncryptedCustomer
GetBasicIdvStatus
Request

None Appropriately checks that the customerId (the
only target field) is associated with the outer
device ID.

ApiEncryptedGetReceipt
CodeRequest

None Appropriately checks that the customerId (the
only target field) is associated with the session
cookie for the outer device ID.

ApiEncryptedGet
LegislatorUrlRequest

None Appropriately checks that the customerId (the
only target field) is associated with the session
cookie for the outer device ID.

ApiEncryptedSubmitVote
ImageRequest

None Appropriately checks that the customerId (the
only target field) is associated with the session
cookie for the outer device ID.

ApiEncryptedGetOrg
AffiliationsRequest

None Appropriately checks that the customerId (the
only target field) is associated with the session
cookie for the outer device ID.

ApiEncryptedGetVoted
EventIdsRequest

None Appropriately checks that the customerId (the
only target field) is associated with the session
cookie for the outer device ID.

ApiEncryptedGetAll
DemographicsRequest

None Does not contain sensitive fields that require
privileged access.

ApiEncryptedOrgIdv
ProfileGetRequest

None Does not contain sensitive fields that require
privileged access.

ApiEncryptedGet
DatafileMetaData
Request

None Does not contain sensitive fields that require
privileged access.

ApiEncryptedGetResults
ForEventList

None Does not contain sensitive fields that require
privileged access.

© 2020 Trail of Bits Voatz Security Assessment | 106

D. Verifiability and Voatz
This appendix describes several notions of “verifiability” from the e-voting literature and
how they apply (or do not apply) to the Voatz system.

End-to-end verifiability
The first notion of verifiability is from Securing the Vote: Protecting American Democracy ,
published by the National Academy of Science, Engineering, and Medicine. In this work,
blockchain voting is discussed as a possibility for future voting. The authors discuss
End-to-End Verifiable (E2E-V) systems as necessary for blockchain voting. They cite a 2015
report from the U.S. Vote Foundation stating that any electronic voting system must be
E2E-V, and echo its claims.

E2E-V systems allow voters to cast encrypted ballots such that ballot counts are verifiable
to anyone, but individual voters’ preferences are not revealed. Additionally, all voters
should be able to verify their ballot was counted correctly, and the system tabulating votes
must be transparent and publicly available. The authors also note that simply because a
system is E2E-V, it is not necessarily secure or suitable for use.

Voatz is not E2E-V. Ballots do not protect voter identities, as they are identified by voters’
device IDs (see TOB-VOATZ-019). On most mobile phones, these IDs are available to any
app running on the voter’s phone and are known to be collected en masse by advertising
companies. Ballots can be de-anonymized with access to the Voatz backend databases,
blockchain, and logs. Votes are simply base64-encoded, not strongly encrypted . Also, vote
totals, tabulation software, and auditing capabilities are not publicly available.

In Securing the Vote , the issue of coercion resistance is also discussed. Ideally, vote
tabulation software would allow users to verify their vote was counted correctly without
offering a receipt listing whom they specifically voted for. This is because such receipts
could easily be used to coerce voters to vote for a particular candidate. Voatz is not
coercion-resistant, as voters receive an explicit receipt showing which candidates they
voted for.

Verifiability notions for e-voting protocols
In 2016, Cortier, et al., published a systemization of knowledge on verifiability in e-voting .
They identified three primary definitions of verifiability: individual verifiability, universal
verifiability, and eligibility verifiability. They claim that viable e-voting systems must satisfy
all three properties.

© 2020 Trail of Bits Voatz Security Assessment | 107

https://people.csail.mit.edu/rivest/pubs/NASEM18.pdf
https://usvotefoundation-drupal.s3.amazonaws.com/prod/E2EVIV_full_report.pdf
https://usvotefoundation-drupal.s3.amazonaws.com/prod/E2EVIV_full_report.pdf
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/
https://people.csail.mit.edu/rivest/pubs/NASEM18.pdf
https://hal.inria.fr/hal-01280445/document

Individual verifiability refers to the ability of individuals to check that their vote was
tabulated. As mentioned above, it may be preferable that individuals can only check that
their vote was counted without an explicit receipt. Voatz satisfies the tabulation property,
albeit by providing an explicit receipt.

Universal verifiability refers to the ability of any observer to verify that the outcome of the
election is in accordance with all submitted votes. Voatz again satisfies this property, as
choice IDs are simply base64-encoded, so an auditor can easily decode them and ensure
the sum is as advertised. Although only auditors have access to this information, this is
similar to a traditional election setup.

Eligibility verifiability refers to the ability of any observer to check that only eligible
individuals cast votes in a given election. Voatz does not provide any such guarantees, and
while some ad hoc verification could be performed with records of Jumio calls, no formal
system is in place to ensure this property holds. Again, only auditors have access to the
most relevant information. As a corollary, in Voatz it is impossible to verify whether any
individual voters voted more than once in a given election.

© 2020 Trail of Bits Voatz Security Assessment | 108

E. Fix Log
Trail of Bits performed a retest of the Voatz system on February 27, 2020. Voatz provided
fixes and supporting documentation for the findings in this security assessment report.
Each finding was re-examined and verified by Trail of Bits.

Some of Voatz’ modifications were made in feature branches that were not merged into
master branch, likely due to time limitations. The fixes were not tested for functional
correctness, and we could not verify the fixes in any deployed system.

Voatz addressed eight (8) issues and partially addressed six (6) issues. The remaining
thirty-four (34) issues either remain unfixed or their fixes were not verifiable by Trail of Bits.

Finding status

Title Severity Status

1 Device IDs not validated against inner
request device IDs

High Not Fixed

2 Amazon admin password is hardcoded in
source file

High Partial Fix

3 Non-anonymous ballot receipts are
encrypted with AES-CBC using hardcoded
key and IV

High Fixed

4 Secrets are stored in environment variables
sourced from bash script

High Not Fixed

5 API for the onboarding workflow prohibits
partitioning cloud resources for concurrent
elections

High Not Fixed

6 Receipt and affidavit filename collisions High Not Fixed

7 A voter can unregister another voter’s
device

High Fixed

8 Input keying material for AES GCM encoding
is sent to Graylog

High Fixed

© 2020 Trail of Bits Voatz Security Assessment | 109

9 Voatz backend SSL key has a subdomain
wildcard

High Not Fixed

10 Clients can specify their own audit token High Not Fixed

11 Test parameters in the registration APIs can
bypass SMS verification

High Not Fixed

12 QR code receipt generation will fail for large
non-anonymous ballots

Medium Fixed

13 Session token validation ignores idle
timeout

Medium Not Fixed

14 Receipt encryption is weak and can leak
confidential information

Medium Not Fixed

15 Insufficient device ID validation on backend Medium Not Fixed

16 Potential resource exhaustion via
logging/storage of unsanitized data

Medium Not Fixed

17 Resource exhaustion via specially-crafted
Zimperium threats

Medium Partial Fix

18 Zimperium checks on the backend are a
blacklist, not a whitelist

Medium Partial Fix

19 AES-GCM key/nonce/tag encryption system
breaks authenticity

Medium Partial Fix

20 Unauthenticated ECDH is vVulnerable to key
compromise impersonation

Medium Not Fixed

21 AES-GCM keys, nonces, and “tag”s are
encrypted using AES-ECB

Medium Fixed

22 Voatz API server lacks OCSP stapling Medium Not Fixed

23 Empty ballots are not recorded in
Hyperledger

Low Not Fixed

© 2020 Trail of Bits Voatz Security Assessment | 110

24 Database root credentials stored in git Undetermined Not Fixed

25 Signed voter affidavits are sent to an
administrative email

Undetermined Not Fixed

26 AES-GCM AAD usage is non-standard Undetermined Not Fixed

27 Session cookie expiration offset is a
hardcoded literal

Informational Not Fixed

28 Encrypted application data is trivially brute
forceable

High Not Fixed

29 PBDKF2 provides insufficient security
margin for PIN codes

High Partial Fix

30 Third-party apps can capture the Android
client screen and read screenshots taken
from the client

High Fixed

31 Android release build signing key password
and keystore password stored in git

High Not Fixed

32 A malicious website can read from the
Android client’s internal storage

High Fixed

33 Insufficient Android device ID construction Low Partial Fix

34 Android client does not use the SafetyNet
Attestation API

Low Not Fixed

35 Android client does not use the SafetyNet
Verify Apps API

Low Not Fixed

36 Certificate pinning is only configured for the
main Voatz domain

Low Not Fixed

37 No explicit verification of the Android
Security Provider

Low Not Fixed

38 Jumio Netverify API credentials stored in git Undetermined Not Fixed

© 2020 Trail of Bits Voatz Security Assessment | 111

39 Google Services API key stored in git Undetermined Not Fixed

40 A malicious website may be able to execute
JavaScript within the Android client

Informational Fixed

41 The iOS client does not disable custom
keyboards

Medium Not Fixed

42 The iOS client does not use
system-managed login input fields

Low Not Fixed

43 iOS client keychain items are not excluded
from iCloud and iTunes backups

Low Not Fixed

44 Cryptographic credentials are not
generated in the iOS secure enclave

Low Not Fixed

45 iOS client disables Apple Transport Security
(ATS)

Undetermined Not Fixed

46 iOS client is vulnerable to object
substitution attacks

Undetermined Not Fixed

47 An iOS user can lose their registration Informational Not Fixed

48 iOS client is susceptible to URI scheme
hijacking

Informational Not Fixed

© 2020 Trail of Bits Voatz Security Assessment | 112

Detailed fix log
This section includes brief descriptions of fixes implemented by Voatz after the end of this
assessment that Trail of Bits was able to review.

TOB-VOATZ-006: Non-anonymous ballot receipts are encrypted with AES-CBC using
hardcoded key and IV (High)
Fixed. The code related to non-anonymous events will no longer be used and has been
removed from the codebase.

TOB-VOATZ-008: Insufficient Android device ID construction (Low)
Partial fix. Android device IDs now default to a UUID if the version returned from the OS is
null . This approach does not prevent a user from being unregistered on device reset,
however, Voatz has indicated that this is intended behavior.

TOB-VOATZ-009: QR code receipt generation will fail for large non-anonymous ballots
(Medium)
Fixed. The code related to non-anonymous events will no longer be used and has been
removed from the codebase.

TOB-VOATZ-011: AES-GCM keys, nonces, and “tag”s are encrypted using AES-ECB
(Medium)
Fixed. AES-ECB has been replaced with AES-GCM.

TOB-VOATZ-017: Amazon admin password is hardcoded in source file (High)
Partial fix. The Amazon test OTP settings have been removed from
AmazonTestOtpUtility.scala . However, they were moved from the codebase to
MongoDB rather than to a secure location such as a secret vault or hardware security
module.

This refactor also contributed to a new finding, TOB-VOATZ-047 , that can allow an attacker
to bypass SMS verification during pre- and re-registration.

Finally, the password was removed from the HEAD of the development branch. However, in
the mirror of the git repository provided to Trail of Bits, the credentials still exist in the git
history. If not already performed upstream, the git repository should be rebased to remove
the credentials from the history. Trail of Bits has no way to independently confirm whether
the admin password has been rotated.

TOB-VOATZ-022: A voter can unregister another voter’s device (High)
Fixed. CustomerMongoDaoAsync.scala was modified on February 21 in git commit ce70626
to always require a user to authenticate via email during re-registration.

© 2020 Trail of Bits Voatz Security Assessment | 113

However, the modification to CustomerMongoDaoAsync.scala to accommodate this
refactor resulted in a new finding, TOB-VOATZ-047 , that can allow an attacker to bypass
SMS verification during pre- and re-registration.

TOB-VOATZ-023: Input keying material for AES-GCM encoding is sent to Graylog (High)
Fixed. This has been removed from AesGcmEncoding.scala .

TOB-VOATZ-024: AES-GCM key/nonce/tag encryption system breaks authenticity
(Medium)
Partial fix. The AES-GCM key, nonce, and tag are now encrypted using AES-GCM, both
within the Core Server and Android client. However, source code updates for other system
components were not provided, so we cannot confirm a fix for the entire system.

TOB-VOATZ-025: PBDKF2 provides insufficient security margin for PIN codes (High)
Partial fix. PBKDF2 was reconfigured to use 10,000 iterations. However, given the low
entropy of the PIN codes, this is still insufficient. We recommend performing an experiment
to determine the highest iteration count that is computationally feasible in the system.
Ultimately, we recommend transitioning to a modern KDF like Argon2id or scrypt .

TOB-VOATZ-029: Zimperium checks on the backend are a blacklist, not a whitelist
(Medium)
Partial fix. CustomerMongoDaoAsync.scala was modified on February 11 in git commit
1430323 to include a call to the Zimperium API during new user registration. This ensures
that the user’s device has attested to Zimperium at least once. However, this does not
prevent an attacker from running an unmodified version of Voatz once to attest to
Zimperium, and then proceeding to register with a modified version of Voatz with
Zimperium disabled.

TOB-VOATZ-030: Resource exhaustion via specially-crafted Zimperium threats
(Medium)
Partial fix. CustomerMongoDaoAsync.scala was modified on February 9 in git commit
58afe9d to include verification of threats. However, although the threatId check is
case-insensitive, when retrieving a snapshot from the threatId the comparison appears to
be case-sensitive. If this is correct, an attacker can supply different case variants for
threatId and achieve duplicate requests. The API endpoint also still lacks verification of
the inner vs. outer request layer device IDs. This allows an attacker to send repeated
requests with different device IDds to achieve a similar resource exhaustion to
enumerating threatId s. See finding TOB-VOATZ-014 .

TOB-VOATZ-032: Third-party apps can capture the Android client screen and read
screenshots (High)
Fixed. FLAG_SECURE was set on relevant Android windows.

© 2020 Trail of Bits Voatz Security Assessment | 114

https://github.com/P-H-C/phc-winner-argon2
https://en.wikipedia.org/wiki/Scrypt

TOB-VOATZ-035: A malicious website can read from the Android client’s internal
storage (High)
Fixed. File access was disabled from the Voatz Android client’s WebView.

TOB-VOATZ-036: A malicious website may be able to execute JavaScript
(Informational)
Fixed. JavaScript support was explicitly disabled in the Voatz Android client’s WebView.

© 2020 Trail of Bits Voatz Security Assessment | 115

Unaddressed findings and unverified fixes
This section includes brief descriptions of:

1. findings that remain unfixed;
2. findings whose risk has been accepted by Voatz; and/or
3. fixes that cannot be independently verified by Trail of Bits (e.g. , due to a lack of

access to code or infrastructure updates).

On March 11th, we received additional information concerning Voatz’s plans to address
these issues in the future. We reproduce that information here. All responses from Voatz
are included as italicized quotes. Where applicable, we provide justification for instances in
which independent verification was impossible.

TOB-VOATZ-001: Jumio Netverify API credentials stored in git (Undetermined)

These were a few years old and have since been rotated and are no longer stored in git.

The API credentials were removed from the HEAD of the development branch. However, in
the mirror of the git repository provided to Trail of Bits, the credentials still exist in the git
history. If not already performed upstream, the git repository should be rebased to remove
the credentials from the history. Trail of Bits has no way to independently confirm whether
the credentials have been rotated.

TOB-VOATZ-002: Google Services API key stored in git (Undetermined)

Voatz accepts the risk presented here and believes the frequent key rotation, other
controls in place provide sufficient safeguards in the short term.

TOB-VOATZ-003: Android release build signing key password and keystore password
stored in git (High)

Voatz accepts the risk presented here and believes the frequent key rotation, other
controls in place provide sufficient safeguards in the short term.

TOB-VOATZ-004: Unauthenticated ECDH is Vulnerable to key compromise
impersonation (Medium)

This is being addressed as part of the noise protocol implementation in an upcoming
release.

TOB-VOATZ-005: Session cookie expiration offset is a hardcoded literal
(Informational)

© 2020 Trail of Bits Voatz Security Assessment | 116

Voatz accepts the risk here and plans to re-evaluate this in a future release.

TOB-VOATZ-008: Insufficient Android device ID construction (Low)

The reregistration upon device reset is a mandatory part of the user workflow and users
are advised about the same via help messages, other tutorials.

We were unable to independently verify the existence of modified help messages or
tutorials that indicate this behavior.

TOB-VOATZ-010: API for the onboarding workflow prohibits partitioning cloud
resources for concurrent elections (High)

Given the nature of the current election pilots, Voatz is comfortable with the current
approach and plans to address scalability challenges as part of the version 2 of its
platform.

TOB-VOATZ-012: AES-GCM AAD usage is nonstandard (Undetermined)

Voatz is comfortable with its AAD usage and believes that it aids its security protocols.

TOB-VOATZ-013: Secrets are stored in environment variables sourced from bash
script (High)

Voatz accepts the risk presented here and believes that its internal controls provide
sufficient safeguards to prevent misuse.

TOB-VOATZ-014: Device IDs not validated against inner request device IDs (High)

For endpoints that are sensitive, Voatz believes that the additional session level checks in
place in the code provide sufficient protection against such a threat. For endpoints that
are not sensitive, Voatz accepts the risk presented here and believes its layered security
protocols will detect misuse.

TOB-VOATZ-015: Receipt encryption is weak and can leak confidential information
(Medium)

Voatz is working on addressing this as part of its upcoming release.

TOB-VOATZ-016: Database root credentials stored in git (Undetermined)

These were old local test credentials from a few years ago and are no longer used.

© 2020 Trail of Bits Voatz Security Assessment | 117

The database credentials were removed from the HEAD of the development branch.
However, in the mirror of the git repository provided to Trail of Bits, the credentials still
exist in the git history. If not already performed upstream, the git repository should be
rebased to remove the credentials from the history. Trail of Bits has no way to
independently confirm whether the credentials are still used.

TOB-VOATZ-018: Session token validation ignores idle timeout (Medium)

A memcached session entry is ejected when the TTL or TimeToLive expires. This setting is
configurable server side and is used to control the duration of a valid session. This
renders the MaxIdleTime setting superfluous and it is for this reason the code reading the
MaxIdleTime setting was commented out.

This will likely mitigate the issue. However, Trail of Bits was not furnished with a copy of the
memcached configuration file and can therefore not confirm that it is configured in this
way.

TOB-VOATZ-019: Insufficient device ID validation on backend (Medium)

Voatz is working on adding good-form validation as part of its upcoming release.

TOB-VOATZ-020: Receipt and affidavit filename collisions (High)

This is mitigated by ensuring single-use audit tokens that cannot be reused again.

The code provided to Trail of Bits does not appear to have any reference to “single-use
audit tokens”. In the assessed version of the code, the backend does not verify audit tokens
on ballot submission.

TOB-VOATZ-021: Signed voter affidavits are sent to an administrative email
(Undetermined)

This finding is not relevant. Firstly, this is required per the legal guidelines of the election
jurisdictions. See sample affidavit for reference. Secondly, the destination email is
provided by the jurisdiction. The email address in your snippet is just a placeholder.
Thirdly, our pilot jurisdictions already allow eligible absentee voters to return ballots via
email or efax (~remember Voatz is an additional method that is being piloted) and have
their own practices, procedures in terms of handling spam, etc. Lastly, Voatz servers send
these emails from a whitelisted email address using a dedicated IP address and using a
service that is protected using DMARC, DKIM, SPF.

TOB-VOATZ-025: PBDKF2 provides insufficient security margin for PIN codes (High)

© 2020 Trail of Bits Voatz Security Assessment | 118

This has been partially addressed. The remainder is being addressed as part of the
updates for TOB-VOATZ-048.

TOB-VOATZ-026: Certificate pinning is only configured for the main Voatz domain
(Low)

Voatz accepts the risk here and is addressing this as part of an upcoming release.

TOB-VOATZ-027: Empty ballots are not recorded in Hyperledger (Low)

Voatz has addressed this in the audit documentation.

Trail of Bits was not furnished with the updated audit documentation.

TOB-VOATZ-028: Voatz backend SSL key has a subdomain wildcard (High)

Voatz accepts the risk presented here and plans to re-evaluate this at a later time.

TOB-VOATZ-029: Zimperium checks on the backend are a blacklist, not a whitelist
(Medium)

Voatz believes that its 3-way off channel check will detect attempts to bypass Zimperium
as such a check is not visible to an attacker.

Zimperium attestation checks added after the assessment are only during registration and
re-registration. We did not see any code that would detect a client that had removed
Zimperium after registration.

TOB-VOATZ-030: Resource exhaustion via specially-crafted Zimperium threats
(Medium)

Voatz accepts the risk presented here and believes its layered security protocols will
detect this early and stop the misuse.

TOB-VOATZ-033: Voatz API server lacks OCSP stapling (Medium)

This has been enabled on the relevant Voatz servers.

Trail of Bits was not furnished with a list of servers that have been updated, and therefore
cannot independently verify that they have been updated. Also, while iOS supports OCSP
stapling by default, the Android client will need to be updated to support it.

© 2020 Trail of Bits Voatz Security Assessment | 119

TOB-VOATZ-034 (No explicit verification of Android security provider)

This is addressed via the Zimperium integration.

Trail of Bits could not independently verify that Zimperium’s proprietary anti-tamper
checks explicitly verify the Android security provider. We recommend an additional check
be included in the event that Zimperium is ever disabled (e.g. , as occurred during the 2018
West Virginia pilot election), intentionally or unintentionally.

TOB-VOATZ-037: Android client does not use the SafetyNet Attestation API (Low)

This is being added as part of the upcoming release.

TOB-VOATZ-040: The iOS client does not disable custom keyboards (Medium)

Voatz accepts the risk here and plans to address this in an upcoming release.

TOB-VOATZ-045: Android client does not use the SafetyNet Verify Apps API (Low)

This is being added as part of the upcoming release.

TOB-VOATZ-046: Clients can specify their own audit token (High)

Voatz accepts the risk presented here and believes the other controls in place (such as
single use audit tokens) in the system provide sufficient safeguards to prevent misuse.

As is discussed in the response to TOB-VOATZ-020 above, the code provided to Trail of Bits
does not appear to have any reference to “single-use audit tokens”.

TOB-VOATZ-047: Test parameters in the registration APIs can bypass SMS verification
(High)

This test code has been removed from the repository.

This change would fully fix the issue. However, these changes do not appear to have been
pushed to the git repository to which Trail of Bits was given access. Therefore, we cannot
independently confirm that the fix is correct.

TOB-VOATZ-048: Encrypted application data is trivially brute-forceable (High)

Voatz is enhancing this functionality as part of its upcoming release. The salt is actually
stored in an encrypted shared preferences file so there is partial mitigation in place
already.

© 2020 Trail of Bits Voatz Security Assessment | 120

We observed that the salt is stored in the app’s shared preferences, which are not
encrypted at rest.

© 2020 Trail of Bits Voatz Security Assessment | 121

