
InkaVote Plus Source Code Review 11/25/07

InkaVote Plus
Source Code Review

for

California Secretary of State

Debra Bowen

2-7 October 2007

The source code review for the InkaVote Plus system was conducted by:

atsec information security corporation
9130 Jollyville Road, Suite 260
Austin, TX 78759
www.atsec.com

for California Secretary of State Debra Bowen under contract with Freeman, Craft, &
McGregor Group (FCMG). atsec is accredited as a Common Criteria Evaluation Lab, a
Cryptographic Module Test Lab (FIPS 140-2), and provides other computer security
testing services for commercial companies.

General Description of Equipment Under Test (EUT)

The InkaVote Plus system, marketed by Election Systems & Software (ES&S), consists
of the InkaVote Precinct Ballot Counter (PBC) and Unisyn Election Management System
(EMS). The PBC is based on a standalone lottery ticket machine design developed by the
International Lottery & Totalizator Systems, Inc. (ILTS). The system supports the
InkaVote ballot, which has been used in County of Los Angeles and City of Los Angeles
elections for several years. The InkaVote ballot is a mark sense ballot based on the
design of a Hollerith (IBM) punch card. Ballot identification data is pre-punched in the
leading columns. To vote, the card is placed in a marking device, which has a ballot-
voting booklet and template guide showing the location to mark a vote for each candidate
in each contest. A special marking pen is used to mark the voter’s choices. The
InkaVote Plus PBC unit may be equipped with an optional component called the Audio
Ballot unit, which provides support to assist visually blind as well as other voters who
need an audio ballot. The Audio Ballot unit consists of a keypad, earphones, and printer,
and does not include a visual display for the voter of the ballot. This unit uses an audio
ballot script, which guides the voter through voting and prints a marked InkaVote ballot.
The voter may then insert the marked ballot into the PBC unit, which checks for
overvotes and blank ballots. Voters who mark their ballots manually or with the ballot
booklet template may also use the PBC unit to check the ballots for overvotes and blank
ballots. If an overvoted or blank ballot is detected, the system returns the ballot to the
voter, giving the voter an opportunity to remake the ballot. This error checking is a Help

 Page 1 of 14

http://www.atsec.com/

InkaVote Plus Source Code Review 11/21/07
 Rev 1.1

America Vote Act (HAVA) requirement. Although the PBC unit is capable of tallying
the ballots and producing a machine report of the results when the polls close, the City of
Los Angeles and County of Los Angeles only use the system for the audio ballot and
error checking functions, without using the ballot tally and reporting functions. The
InkaVote ballots in the City and County of Los Angeles are tallied and reports are
generated by a central counting system used for all the ballots, including both the polling
place and absentee ballots.

The Unisyn EMS suite of applications is a set of Java-based software applications which
allows the user to create election definitions for the PBC, and load the election definition
into one or more PBCs (multiple units may be programmed using an Ethernet link). The
suite design includes the option to load compatible XML formatted election definitions
from other election management systems. Once the polls close, the tally results may be
transferred back to the EMS suite for accumulation of multiple PBCs’ results and
reporting. The Unisys EMS suite of applications operates on Windows XP-supported
workstations. EMS component applications operate independently and may be installed
on separate workstations as needed. The component applications include:

• an election database, using MySQL;
• the application to modify and define the election for each election, which is

identified in the manuals as the “EMS” application or “Election Generator”;
• an Election Converter which converts an XML description of an election and

produces an encrypted Election CD;
• an Election Loader, which supports the installation of the election provided by the

Election CD in each PBC using a local Ethernet network;
• a Vote Converter to transfer the voting results from the PBC using a USB

memory media device as a carrier, a.k.a. Transfer Device; and
• a Vote Tabulation module to tabulate, consolidate, and generate election reports

on the voting results.
The County of Los Angeles provides the XML election definition from their legacy
election system to the Election Converter component and uses the Election Loader
component to load the election into the PBC. Because the City and County of Los
Angeles do not use the tabulation and reporting capabilities of the system, the other
components of EMS are not used.

Scope Limitations

The City and County of Los Angeles only use InkaVote Plus PBC for the specific
purposes of:

• detecting and preventing the casting of ballots which are blank;
• detecting and preventing the casting of ballots which have at least one overvoted

race; and
• providing the Audio Ballot interface which marks ballots for voters requiring the

audio ballot.

The ballot tabulation and reporting features of the InkaVote Plus system are not being
used in this venue. Accordingly, the examiners were asked to limit their examination,

 Page 2 of 14

InkaVote Plus Source Code Review 11/21/07
 Rev 1.1

where possible, to the modules of the system which are being used by the County and
City of Los Angeles and to vulnerabilities that affect:

• the integrity of the election definition needed to support the error detecting and
Audio Ballot functions;

• security audit logs and the log reporting services; and
• the basic operation of the PBC (i.e., denial of service attacks).

The full system was supplied as a testing resource, and all technical documentation was
provided for reference. Documents and source code not in the scope of testing were
available to the Source Code Review Team as a resource, if needed. For example, during
the Red Team test, the tally and report generation features within the PBC were used to
document and demonstrate the effectiveness of one of the demonstrated exploits. If the
Source Code Review Team did notice that an identified vulnerability could affect vote
tallies or reports, they were encouraged to report it, although it was not a primary focus.

The County of Los Angeles procedures and programs to generate the XML were outside
the scope of testing.

For the purpose of the test, the test team was asked to consider four classes of attackers:

• Voter: Usually has low knowledge of the voting system machine design and
configuration. Some may have more advanced knowledge. May carry out attacks
designed by others. They have access to the machine for less than one day.

• Poll worker: Usually has a low knowledge of the voting machine design and
configuration. Some may have more advanced knowledge. May carry out attacks
designed by others. They have access to the machine for less than one day.

• Election official insider: Has a wide range of knowledge of the voting machine
design and configuration. They may have restricted access for long periods of
time. Their designated activities include:

o Set up and pre-election procedures.
o Election operation.
o Post election processing of results, and
o Archiving and storage operations.

• Vendor insider: Has a great knowledge of the voting system design and
configuration. They have unlimited access to the machine before it is delivered to
the purchaser and, thereafter, may have unrestricted access when performing
warranty and maintenance service and when providing election administration
services.

atsec added one other category on FCMG recommendation: the storage or warehouse
worker with virtually unlimited access between elections.

The team was not limited to these attackers, and their direction included direction from
Resolution # 17-05 of the Technical Guidelines Development Committee (hereafter
“TGDC”) of the U.S. Election Assistance Commission, adopted at the TGDC plenary
meeting on January 18 and 19, 2005, which calls for:

 Page 3 of 14

InkaVote Plus Source Code Review 11/21/07
 Rev 1.1

“. . . testing of voting systems that includes a significant amount of open-ended research
for vulnerabilities by an analysis team supplied with complete source code and system
documentation and operational voting system hardware. The vulnerabilities sought
should not exclude those involving collusion between multiple parties (including vendor
insiders) and should not exclude those involving adversaries with significant financial and
technical resources.”

The specific tasking, as presented in the Statement of Work for the Source Code Review
Team, was:

“The review places emphasis on security and integrity of the system and should
identify any security vulnerabilities that could be exploited to alter vote recording,
vote results, critical election data such as audit logs, or to conduct a “denial of
service” attack on the voting system.

The review will include, but not be limited to:

• Adherence to the applicable standards in sections: 4 of Volume I [Software
Standards], 7 of Volume I [Quality Assurance], and 5[Software Testing] of
Volume II of the 2002 Voluntary Voting System Standards.

• Adherence to other applicable coding format conventions and standards
including best practices for the coding language used, and any IEEE, NIST,
ISO or NSA standards or guidelines which the reviewers find reasonably
applicable.

• Analysis of the program logic and branching structure.

• Search for exposures to commonly exploited vulnerabilities, such as buffer
overflows, integer overflow, inappropriate casting or arithmetic.

• Evaluation of the use and correct implementation of cryptography and key
management.

• Analysis of error and exception handling.

• Evaluation of the likelihood of security failures being detected.

o Are audit mechanisms reliable and tamper resistant?

o Is data that might be subject to tampering properly validated and
authenticated?

• Evaluation of the risk that a user can escalate his or her capabilities beyond
those which are authorized.

• Evaluation of whether the design and implementation follow sound,
generally accepted engineering practices. Is code defensively written
against:

o bad data,

o errors in other modules,

o changes in environment,

 Page 4 of 14

InkaVote Plus Source Code Review 11/21/07
 Rev 1.1

o user errors,

o and other adverse conditions?

• Evaluation of whether the system is designed in a way that allows
meaningful analysis.

o Is the architecture and code amenable to an external review (such as
this one)?

o Could code analysis tools be usefully applied?

o Is the code complexity at a level that it obfuscates its logic?

• Search for embedded, exploitable code (such as “Easter eggs”) that can be
triggered to affect the system,

• Search for dynamic memory access features which would permit the
replacement of certificated executable code or control data or insertion of
exploitable code or data

• Search for use of runtime scripts, instructions, or other control data that
can affect the operation of security relevant functions or the integrity of the
data.

….

The review is to provide a “Vulnerability Assessment”, based upon the model
provided in ISO/IEC WD 18045:2006(E) Information Technology-Security
Techniques-Methodology for IT Security Evaluation, App B documenting and
categorizing vulnerabilities, if any, to any tampering or errors that could cause
incorrect recording, tabulation, tallying or reporting of votes or that could alter
critical election data such as election definition or system audit data.”

Operation of the Review

The review was conducted 2-14 October 2007 at the atsec offices in Austin, TX. The
team consisted of two experts from atsec (Stephan Mǖller and Klaus Weidner) and was
supported by meetings with FCMG (Steve Freeman).

The review (consisting of documentation review and source review) examined the ES&S
Technical Data Package (TDP) and the source code. The TDP and source code used
were verified copies of the TDP and source code, which were sent from the National
Association of Election State Election Directors (NASED) Independent Test Authority
(ITA) lab. The chain of custody followed the files from the lab, to the Secretary of State,
to the Source Code Review and Red Teams at atsec. The integrity of the delivered
documents was verified from electronic file signature hashes provided by FCMG from
the trusted sources original disks.

atsec divided the documentation review (based only on the TDP, with no reference to the
source code) into two categories for reporting:

 Page 5 of 14

InkaVote Plus Source Code Review 11/21/07
 Rev 1.1

5.1 Sufficiency to Enable Review of Source Code
5.2 Sufficiency to Design and Conduct Tests

The source code review (based on the TDP, in addition to the source code) used a
combination of manual review and automated data collection and analysis methodologies
to identify potential areas for exploitation. The source code review was divided into the
following categories for reporting:

 6.1 Adherence to applicable standards
 6.2 Adherence to other coding format conventions and standards
 6.3 Program logic and branching structure
 6.4 Commonly exploited vulnerabilities
 6.5 Cryptography and key management
 6.6 Error and exception handling
 6.7 Likelihood of security failures being detected
 6.8 Privilege escalation
 6.9 Best practices / defensive coding
 6.10 System amenability to analysis
 6.11 Dynamic memory access features
 6.12 Runtime scripts / instructions / control data

Because of the limited time (12 days) and broad scope (assessment of documents and
quality of the code, along with source code review), the team concentrated on surveying a
breadth of categories of vulnerabilities that they could identify, and only reviewed in
depth enough samples of each of the categories to determine how that vulnerability was
being handled. For all the categories, no attempt was made to enumerate how many
instances existed. Other source code review projects would be likely to find more
instances, but those findings should be within the listed categories.

Test tools used included lexical scanners and special code review tools from open
sources, commercially available search and analysis tools, and in-house developed
scripts. Details specifying tools and sources, as well as the scripts used for the tools are
provided in the confidential reports.

Results Summary

Full details will be found in the confidential source code review report, including the
detailed work papers. A vulnerability summary table is found at the end of this report, as
well as a description of the rating system used. The vulnerability rating assessment is
based on the Common Methodology for Information Technology Security Evaluation
(CEM v3.1) Rev 1 and Rev 2, App B. The use of this terminology is for convenience in
characterizing the potential vulnerability of the system to the identified attack, but is not
necessarily compliant with and should not be taken as representing a full, formal finding
under Common Criteria evaluations. The document review and compliance check
against the VSS (2002) are not applicable to the vulnerability assessment and are rated
accordingly.

 Page 6 of 14

InkaVote Plus Source Code Review 11/21/07
 Rev 1.1

The document reviews and assessments are listed in the summary table, but do not carry a
vulnerability assessment unless vulnerabilities were detailed in the worksheet product.

Unless otherwise indicated, the potential vulnerabilities found in the source review have
not been confirmed to be exploitable in the full-deployed environment due to time
constraints, and it is possible that technical measures outside of the specific module being
examined may prevent an exploit. For the purposes of the vulnerability rating, only
assumptions, checks, and protective measures which are clearly identified in the relevant
code comments or documentation are considered to be in place. For example, if a
function implicitly assumes that parameters are checked or sanitized in a different code
location, but no documentation exists for this assumption, the reviewer did not attempt to
trace code paths to check if this implicit assumption is appropriate. For security critical
sections, the reviewer’s expectation was that either explicit checks or clear and verifiable
documentation about assumptions should exist.

Document Assessment

5.1 Sufficiency to Enable Review of Source Code

The documentation provided by the vendor states the system design specifications in very
general terms. There is no detailed description of software components and algorithms
that could be directly compared to specific software modules in the source code. This
means that the documents are of very limited value to conduct a design assessment that
allows searching for vulnerabilities (A.1 of the Summary Table below). No specific
vulnerabilities were identified so there is no vulnerability assessment on this finding.

The documentation provided by the vendor does not contain any test procedure
description; rather, it provides only a very abstract description of areas to be tested. The
document mentions test cases and test tools, but these have not been submitted as part of
the TDP and could not be considered for this review. The provided documentation does
not show evidence of "conducting of tests at every level of the software structure". The
TDP and source code did not contain unit tests, or any evidence that the modules were
developed in such a way that program components were tested in isolation.
The vendor documentation contains a description of cryptographic algorithms that is
inconsistent with standard practices and represented a serious vulnerability. No
vulnerability assessment was made as part of the documentation review because the
attack approach could not be identified based on the documentation alone. (The source
review identified additional specific vulnerabilities related to encryption).

The reviewer found inconsistencies, wrong references, and a lack of technical details on
the Linux hardening1 procedures to be used (A.3). The Red Team reported encountering

1 Hardening is a technique which has been supported by the publication of standard guidelines through
Microsoft, NIST, and the Center for Internet Security for reducing the services and features from a default
installation of the operating system. This practice supports Software Engineering security principles such

 Page 7 of 14

InkaVote Plus Source Code Review 11/21/07
 Rev 1.1

some good hardening practices on the test machines that prevented many common
attacks, but these were apparently done by the ES&S/ILTS installation crew that set the
system up for Red Team testing and may not be documented. The vendor-supplied
material does not provide assurance that this is the standard procedure for all installed
systems. The Source Code Review Team did note that the version(s) of the Linux
Operating System described was an older version that is no longer being maintained by
the operating system distributor. As such, the lack of updated security patches and
releases suggests that there are documented vulnerabilities available through the Web.
The Red Team was successful in several attacks using openly known vulnerabilities.
The System Security Specification identified a file as being generated “as part of the
configuration process for the customer.” The Red Team had found the file and
determined it contained the Jurisdiction key, determined it is used to create encryption
keys for the election, and used it plus some other information to open all the files,
including encrypted files on the Election CD. The problem the Review Team identified
was that there is no description of how or when the file is created and how it was handled
(A.4). As it is a significant factor in the creation of the encryption keys used by EMS and
the PBC, secure handling and management is necessary but undocumented.

Source Code Assessment

Vulnerabilities

The source review identified potential or actual vulnerabilities as listed in the appendix of
this report, and detailed in the confidential report.

In the area of cryptography and key management, multiple potential and actual
vulnerabilities were identified, including inappropriate use of symmetric cryptography for
authenticity checking (A.8), use of a very weak homebrewed cipher for the master key
algorithm (A.7), and key generation with artificially low entropy which facilitates brute
force attacks (A.6). In addition, the code and comments indicated that a hash (checksum)
method that is suitable only for detecting accidental corruption is used inappropriately
with the claimed intent of detecting malicious tampering. The Red Team has
demonstrated that due to the flawed encryption mechanisms a fake election definition CD
can be produced that appears genuine, see Red Team report, section A.15.

106 instances were identified of SQL statements embedded in the code with no evidence
of sanitation of the data before it is added to the SQL statement. It is considered a bad
practice to build the SQL statements at runtime; the preferred method is to use predefined
SQL statements using bound variables. A specific potential vulnerability was found and
documented in A.10, SQL Injection. SQL injection attacks could potentially be used to
modify any of the information stored in the database, bypassing the sanity checks and
logging that the code would normally do. Note that in the intended deployment scenario,
the software’s capability of aggregating vote counts in the database is not used.

as ‘Least privileges’. In application, the technique requires careful testing and implementation to avoid
disabling applications (a potential ‘denial of service’ condition) or hamper application design features
providing other security protections.

 Page 8 of 14

InkaVote Plus Source Code Review 11/21/07
 Rev 1.1

A potential vulnerability was found related to Zip File directory traversal (A.9) with the
potential impact of creating or overwriting files on the system in attacker-specified
locations outside of the intended storage directory.

The reviewer found no instances of deliberately inserted back doors or Easter eggs.
However,

• the Zip File directory traversal (A.9),
• SQL injection (A.10), and
• the egregious use of cryptography (A.6, A.7, A.8) could be exploited as a back

door.

Adherence to applicable standards

The Voting Systems Performance and Test Standards [VSS (2002)] provide standards
related to coding conventions and best practices. The reviewer examined the source code
for applicable items as specified in the work plan and reported the result of this
examination.

The confidential report lists specific instances where code constructs do not appear to
match the requirements of this standard. Note that these instances are not automatically
equivalent to actual or potential vulnerabilities. This summary report omits instances that
do not appear noteworthy. The following items are considered significant due to being an
obstacle for effective code analysis, potentially hiding other problems, or because they
could contribute to introducing problems in later changes to the source code.

• Missing validation of input parameters or otherwise inadequate specification of
expected range values, including instances of mismatches between the
documented and actual semantics of functions.

• Java usually handles abnormal conditions with exceptions and expected
conditions with returned values. Multiple examples are provided in the
confidential report where the constructs are used inconclusively or
inappropriately, or where use of abnormal conditions handled through exceptions
is hidden from source review.

• Vote counter/integer overflow. This was out of scope for the review since the
system will not be processing vote counts, but the reviewer did note that the
counters do not have an overflow or out-of-bounds check. The code assumes that
the Java native variables will be large enough to handle integer computations
without overflow. The VSS-2002 does not accept this justification.

• Two incidents of lines containing a conditional and an executable statement on
the same line.

• Uses of numeric constants other than 0 and 1 should be explained by expressive
variable names or code comments. Multiple cases were found where constants
were used without adequate explanation. Most examples are where the constant
value is named as a variable but the name does not indicate why that value is

 Page 9 of 14

InkaVote Plus Source Code Review 11/21/07
 Rev 1.1

significant, for example assigning the value “5” to a variable named “five” with
no further explanation.

• One instance of nested use of the conditional “?:” operator in a complex multi-
line expression.

Overall secure design and implementation

The applications all run at a privilege level that provides full read/write access to all
security critical application data. The ‘least privilege’ principle is not exercised. The lack
of privilege separation in the design does not support reliable detection of security
failures.

Design documents and code comments do not provide any evidence that audit logs are
protected from tampering. The code segments doing logging have sufficient privileges to
modify or delete logs due to the lack of privilege separation. The design documents do
not mention use of operating system features that support the integrity of the logs.

The system design does not depend on runtime scripts or instructions for its operation. It
does depend on data provided at runtime, specifically the election definition file. The
vulnerabilities related to the handling of this file (such as A.9 and the encryption related
vulnerabilities) provide avenues for attack that can affect the integrity of data, including
the integrity of installed software components.

System amenability to analysis

The reviewer noted the following items as impediments to an effective security analysis
of the system:

• Lack of design documentation at appropriate levels of detail.
• Design does not use privilege separation, so all code in the entire application is

potentially security critical.
• Unhelpful or misleading comments in the code.
• Potentially complex data flow due to exception handling.
• Subjectively, large amount of source code compared to the functionality

implemented.

The code constructs used were generally straightforward and easy to follow on a local
level. However, the lack of design documentation made it difficult to globally analyze the
system.

 Page 10 of 14

InkaVote Plus Source Code Review 11/25/07

SUMMARY TABLE OF SECURITY TESTING FINDINGS

 Attacker Vulnerability Assessment Total

Ref Title Component

V
ot

er

P
ol

l w
or

ke
r

E
le

ct
io

n
of

fic
ia

l

St
or

ag
e

Pe
rs

on
ne

l

Ve
nd

or

S
ca

la
bi

lit
y

Ti
m

e

E
xp

er
tis

e

Kn
ow

le
dg

e

W
in

do
w

 o
f

O
pp

or
tu

ni
ty

Eq
ui

pm
en

t

A
tta

ck
 R

es
is

ta
nc

e

 Source Code

A.1 Evidence
Documents All X X X X N/A Document Review only N/A

A.2 SOAP Encryption PBC X X X N/A Document Review only N/A

A.3 Linux Hardening PBC X X X X High 0 3 0 4 0 Basic

A.4 Configuration
Management All X Undet Document Review only N/A

A.5 Audio Ballot Aid EMS, Audio
Ballot Aid X X X High 0 6 3 0 0 Basic

A.6 Low Key Entropy All X X X High 0 3 3 1 0 Basic

A.7 Weak Master Key
Algorithm All X X X High 0 0 3 1 0 Basic

A.8 Symmetric
Cryptography All X X X High 0 3 3 1 0 Basic

A.9 Zip Directory
Traversal PBC X X High 0 6 3 1 0 Enhanced

A.10 SQL Injection
Password EMS X High 0 3 3 1 0 Basic

 Page 11 of 14

InkaVote Plus Source Code Review 11/25/07

Legend for the Summary Table of Security Testing Findings

Vulnerability Assessment Coding:

1. Time to Exploit. “…total amount of time taken by an attacker to identify that a
particular potential vulnerability may exist in the TOE, to develop an attack method and
to sustain effort required to mount the attack against the TOE. “[CEM v3.1, App B]
“TOE” is the target of evaluation.

2. Expertise. “…the level of generic knowledge of the underlying principles, product
type or attack methods “[ibid]

3. Knowledge of Target of Evaluation (TOE). “…specific expertise in relation to the
TOE.”[ibid]

4. Window of Opportunity. “…equate to the number of samples of the TOE that the
attacker can obtain. This is particularly relevant where attempts to penetrate the TOE and
undermine the SFR may result in the destruction of the TOE preventing use of that TOE
sample for further testing, e.g. hardware devices“[ibid]. For this test, the Window of
Opportunity includes limitations on accessing a specific feature which has significance to
the security of the system. “SFR” is “Security Functional Requirement” which is a
member of set of formally, predefined security requirement in the Common Criteria
standards that are used as a basis for interpreting and testing security requirements for a
TOE.

5. Equipment, hardware/software or other. “…the equipment required to identify or
exploit a vulnerability “[ibid]

 “Table 3, Calculation of Attack Factor” [ibid]

 Page 12 of 14

InkaVote Plus Source Code Review 11/21/07
 Rev 1.1

Factor Value

(1)
When several proficient persons are required to

complete the attack path, the resulting level of
expertise still remains “proficient” (which leads to
a 3 rating).

Elapsed Time
≤ one day 0
≤ one week 1
≤ two weeks 2

(2)
Indicates that the attack path is not exploitable

due to other measures in the intended operational
environment of the TOE.

≤ one month 4
≤ two months 7

(3)

If clearly different test benches consisting of
specialized equipment are required for distinct
steps of an attack, this should be rated as bespoke”

≤ three months 10
≤ four months 13

“bespoke” is specified when “…clearly
different test benches consisting of
specialised equipment are required for
distinct steps of an attack”[ibid].

≤ five months 15
≤ six months 17
> six months 19

 Expertise
 “Table 4, Ratings of vulnerabilities and
TOE resistance”[ibid]

Layman 0

Values Attack potential required to
exploit scenario:

3*
(1)Proficient

Expert 6
Multiple experts 8
Knowledge of TOE
Public 0
Restricted 3
Sensitive 7
Critical 11
Window of Opportunity
Unnecessary /
unlimited access

0

Easy 1
Moderate 4
Difficult 10

**
(2)None

Equipment
Standard 0

4
(3)Specialized

Bespoke 7
Multiple bespoke

TOE resistant to attackers with attack
potential of:

9

0-9 Basic No rating
10-13 Enhanced-Basic Basic

 Page 13 of 14

InkaVote Plus Source Code Review 11/21/07
 Rev 1.1

14-19 Moderate Enhanced-Basic
20-24 High Moderate
≥ 25 Beyond High

As an example, the PBS Physical Access attack described in the Red Team Report Item
A.1 can be done by anyone with access to the PBS (poll worker, election official, storage
worker, or vendor) in less than 20 minutes (≤ one day). The attack requires some skill
with the locks and seals (Proficient) and knowledge of what the seals protect (Restricted)
to be effective. Windows of Opportunity are somewhat limited (Moderate) because other
observers would be expected to respond but the tools were common to home and office
use (Standard). The resulting vulnerability to access (total of the factors=10) barely
qualifies as Enhanced-Basic, which implies that the attack would require more than a
casual event.

In contrast, the CD clear text attack (Red Team Report Item A.8) requires information
gained through experience with the system and system documentation (Knowledge of
TOE=3) and some common software to review the file contents but does not require
additional time (≤ one day) or special tools (Standard). Some knowledge of the system to
recognize the files and clear text contents are needed (Restricted) but the clear text may
be read by a layman (Layman). The Window of Opportunity requires getting a copy of
the CD (Easy). This gives a total vulnerability risk of Basic (Total of factors = 4).

These two examples are both foundation attacks that support other attacks by opening
accesses and acquiring Knowledge of TOE that may be used in other attacks.

Public Report prepared by:
Steven V. Freeman, Senior Partner, Freeman, Craft, McGregor Group

atsec reviewers:
Klaus Weidner, Principal Consultant, atsec information security [Lead Reviewer]
Stephan Mǖller, Principal Consultant, atsec information security

 Page 14 of 14

